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ABSTRACT

In this paper we present a methodology to design pulse
shapes for a direct sequence code division multiple access
(DS-CDMA) ranging signal, using a multicarrier (MC) mod-
ulation. The advantage of this signal design methodology is
that it allows us to perform spectral shaping with very low
Peak-to-Average-Power Ratio (PAPR). This feature makes
this approach very interesting for ranging systems for which
flexible resource allocation and power efficiency are major
concerns, e.g. GNSS (Global Navigation Satellite Systems).

Index Terms— Multicarrier ranging signal, low PAPR,
chip pulse shape design.

1. INTRODUCTION

Chip pulse shape design for direct sequence code division
multiple access (DS-CDMA) systems has a major impact on
many aspects of the ranging performance of a DS-CDMA
system [1]. Moreover, a good chip pulse shape design can
incorporate new services ensuring full backward compatibil-
ity with legacy users [2]. More in general, a modern signal
design can reallocate the available resources, i.e. power and
bandwidth, to fully match the demands of quickly evolving
market scenarios, with the minimal impact on the transmitter
and receiver hardware.
Multicarrier (MC) modulations offer flexible allocation of

the bandwidth, where the controllable radio resources are the
sub-bands which the available bandwidth is divided into. It
is well known however that MC modulations can have higher
Peak-to-Average Power Ratios (PAPR) than single carrier
modulations. High PAPR values create problems when the
ranging signal passes through mixers and nonlinear compo-
nents such as a High Power Amplifier (HPA), causing power
inefficiencies. In some applications where power efficiency
plays a major role, e.g. Global Navigation Satellite Systems

* The work of G. Seco-Granados was supported in part by the Spanish
Ministry of Economy and Competitiveness project TEC 2011-28219.

(GNSS), MC signals with a very low PAPR can be of great
practical interest. Several methods have been proposed to
reduced the PAPR of MC signals [3] for data transmission.
Nevertheless, reducing the PAPR of unmodulated multitone
signals, which can be used for ranging purposes, is a prob-
lem with different challenges [4] [5], which has not been as
widely investigated as the problem of PAPR minimization
for multitone signals aimed at data transmission. Since the
PAPR minimization for MC signals used for ranging need
not be done in real-time, more sophisticated, time-consuming
algorithms can be implemented.
In this paper we present a new methodology to design the

pulse shape of a DS-CDMA signal, employing a MC mod-
ulation with very low PAPR. This approach is based on the
application of some codes developed more than half a cen-
tury ago for radar pulse compression [6], and it allows to
shape the Power Spectral Density (PSD) of the ranging sig-
nal, with the side constraint that the PAPR can never exceed
3 dB. This holds for any number of subcarriers. As a case
study, in this paper we show how a MC chip pulse shape can
have almost the same power spectrum of a pulse shape used
for GNSS, namely a filtered BOCsin(1,1) signal [7], and yet
have a PAPR which is roughly 1.5 dB lower. This suggests
that the proposed chip-pulse shape design, besides offering
high spectral flexibility and power efficiency, it offers a cer-
tain degree of backward compatibility.

2. SIGNAL MODEL

The chip pulse shape of a DS-CDMA signal can be parame-
terized as windowed multitone signal:

p(t) =
1

Tc

N−1∑
n=0

cne
j2πnΔf t

︸ ︷︷ ︸
m(t)

rect

(
t

Tc

)
, (1)
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where rect
(

t
Tc

)
indicates the rectangular function centered

at 0 and of width equal to Tc, with Tc being the chip pulse
duration in seconds. The chip pulse shape (1) is a complex
multitone pulse created by windowing of the complex multi-
tone signal m(t). The frequency separation among the tones
constituting the chip pulse p(t) is given byΔf .
The complex vector

c = [c0, c1, . . . , cN−1]
T ∈ C

N×1, (2)

is called the frequency code of the multitone signal and it de-
termines the amplitudes and the phases of N complex expo-
nentials constituting the signal. We say that the multitone sig-
nal (1) is generated by a frequency code c. A frequency code
uniquely determines a pulse shape (1). In the following, we
assume that the frequency code has unitary norm:

||c||22 = 1 , (3)

which implies that the pulse (1) has unitary energy, if Δf =
k
Tc
, k ∈ N . The frequency code can be written as

c = ρ� θ, (4)

where� is the Hadamard-Schur product and

ρ = [|c0|, |c1|, . . . , |cN−1|]
T ∈ R

N×1, (5)

θ = [ej arg{c0}, ej arg{c1}, . . . , ej arg{cN−1}]T ∈ R
N×1,

(6)
are respectively the code envelope and the phase vector of the
frequency code c. The vector ρ must fulfill the condition:

ρ0ρN−1 = |c0| |cN−1| �= 0. (7)

If this condition is not fulfilled, either the first or the last el-
ement of the frequency code, or both, are zero. This means
that one or two subcarriers at the side of the spectrum con-
tain no power, and thus they do not exist. Consequently, these
subcarriers without power can be eliminated and thus instead
of N , we will have N − 1 or N − 2 subcarriers. If the new
subcarriers at the edges of the frequency code still have zero
power, the frequency code can be further shortened. We say
that a multitone signal possessesN subcarriers, when the fre-
quency code cannot be further shortened, i.e. when (7) holds.
PSD of the signal (1) is mostly determined by the vector

ρ, that indicates how the power is divided among the subcar-
riers.

3. PROBLEM STATEMENT

Our objective is to shape the spectral content of p(t) in a cer-
tain way, and at the same time we want p(t) to have a small
PAPR. That is, we intend to determine the vector ρ so that
the PSD of the pulse shape fits a certain spectral mask and

we want to calculate the vector θ that for this ρ minimizes
the PAPR. Since p(t) is a strictly time-limited pulse, a DS-
CDMA signal built with the pulse p(t) and spread with a con-
stant envelope spreading code has the same PAPR as p(t).
Determining θ for a given ρ such that the PAPR is minimal
is already a very challenging problem for which only empir-
ical or numerical solutions (e.g. [8]) have been proposed. In
this work, we want to solve this problem jointly with the op-
timization of the vector ρ.
The PAPR of the pulse p(t) generated by the generic fre-

quency code c, which for simplicity will also be called the
PAPR of the frequency code c, is given by

PAPRc =
max

t

{
|p(t)|2

}
1
Tc

∫
Tc

|p(t)|2dt
, (8)

The relationship between the frequency code and the PAPR
of the corresponding pulse can be described by means of the
aperiodic auto-correlation function of the frequency code, as
we show. Let the aperiodic auto-correlation of the frequency
code c be

rc [d] =

⎧⎪⎪⎨
⎪⎪⎩

∑N−d−1
k=0 ck+d c∗k , d < 0

∑N+d−1
k=0 ck c

∗
k−d , d ≥ 0

(9)

The instantaneous power of the pulse (1) can be expressed as

|p(t)|2 = 1 + 2 �

{
N−1∑
d=1

rc[d]e
j2πdΔf t

}
, (10)

Since the frequency code has unitary energy we can state that:

PAPRc = 1 + 2

N−1∑
d=1

∣∣rc[d]∣∣ cos(2πdΔf t+ arg {rc[d]}
)
(11)

It is possible to prove [9, Appendix] that:

N−1∑
d=1

∣∣∣rc[d]∣∣∣2 −→ 0
m.s.
⇐⇒ PAPRc −→ 0 dB (12)

with m.s.
⇐⇒ indicating a convergence in the mean square

sense.
Minimizing the metric:

N−1∑
d=1

∣∣∣rc[d]∣∣∣2 (13)

minimizes the maximum possible PAPR [10], yet this does
not allow a full control on the PAPR of the MC signal, be-
cause the convergence (12) holds only in the mean square
sense. Moreover, since the convergence (12) holds only in the
mean square sense, a frequency code that generates a MC sig-
nal with a small PAPR does not necessarily have a small value
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of the metric (13) [11]. On top of that, the metric (13) depends
both on the vector ρ and the vector θ; while the vector θ in
principle can be devoted entirely to PAPR minimization, the
vector ρmust jointly optimise both the spectral shape and the
PAPR and this constitutes a very challenging task.
This non-trivial problem can be significantly simplified

if all the coefficients of the aperiodic autocorrelation of the
frequency code, except the first and the last ones, are set to
zero: ∣∣∣rc[d]∣∣∣ = 0, d = 1, 2, . . . , N − 2 . (14)

If condition (14) is fulfilled by a frequency code c, then the
respective MC signal (and thus pulse) achieves the Friese’s
bound on the PAPR of a multitone signal [9]. A corollary to
(14) is [6]: ∣∣∣rc[N − 1]

∣∣∣ ≤ 0.5 . (15)

Let any frequency code that fulfills condition (14) be de-
noted by c† = ρ† � θ† and its aperiodic autocorrelation by
rc† [n]. A code c† has the following properties:

1. The PAPR depends on a single parameter
∣∣∣rc† [N − 1]

∣∣∣
and thus it can be easily steered.

2. The PAPR can never exceed 3 dB, independently from
the number of subcarriers.

3. For a given value of
∣∣∣rc† [N − 1]

∣∣∣ a limited number of
codes c† exists [6].

The PAPR of codes fulfilling (14) is given by:

γ = 10 log10

(
1 + 2

∣∣∣rc† [N − 1]
∣∣∣) , (16)

which in conjunctionwith (15) explains why the PAPR is lim-
ited to 3 dB.
Moreover, it is worth noting that the PAPR minimization

problem (e.g. [8]): ”Given a vector ρ, find the vector θ that
minimizes the objective function (8)” is not a problem that
always possesses a global minimum. It is possible to prove
that condition (14) restricts the set of all code envelopes to
those vectors ρ for which there exists a vector θ that pro-
vides a global minimum for the PAPR minimization problem.
In the following we explain how to generate codes fulfilling
condition (14) and how constrained spectral shaping can be
performed.

4. HUFFMAN CODES

Condition (14) identifies a set of codes known as Huffman
codes [6]. Huffman codes [6] are codes developed for radar
pulse compression and are not to be confused with epony-
mous codes used for source data compression.
A Huffman code of lengthN is uniquely identified by two

parameters

• a vector ofN−1 binary symbols, which we call binary
generator and indicate by bk, with the subscript k being
the identifier of the binary generator,

• the sidelobe of the aperiodic correlation, that deter-
mines PAPR of the corresponding MC signal through
(16).

The sidelobe of the aperiodic correlation
∣∣∣rc† [N − 1]

∣∣∣ de-
termines the two radii of the circles on which the N − 1 roots
of the associated polynomial are located [6]. The binary vec-
tor bk determines, for each of theN−1 angular locations [6],
on which of the two radii the roots of the k-th Huffman code
are located. A cyclic permutation of the binary generator cor-
responds to a rotation of the roots. This operation corresponds
to a multiplication for a complex exponential in the Huffman
code space and it is thus irrelevant [12]. Two binary gen-
erators, which have the property that one cannot be written
as a cyclic permutation of the other, individuate two differ-
ent Huffman codes with distinct envelopes (5). Two Huffman
codes with this property are said to be distinct, and such are
their binary generators. Two distinct Huffman codes that have
the same value of aperiodic correlation sidelobe

∣∣∣rc† [N − 1]
∣∣∣

generate two MC pulses (1) with exactly the same PAPR. The
set of all distinct Huffman codes that have the same aperi-
odic autocorrelation sidelobe represents the set of all possible
codes satisfying (14) that yield the same PAPR. A Huffman
code family is identified by the code length and the aperiodic
autocorrelation sidelobe (or equivalently the PAPR γ). The
generic Huffman code is indicated by cHuff (bk, γ), where
bk is the binary generator identifying the code. The number
of codes for each family is given by the number of the dis-
tinct binary generators. Spectral shaping is thus performed by
means of a line search in all Huffman code families, in order
to find the code cHuff (bk, γ)with the desired code envelope.
In particular:

1. All distinct binary vectors of length N − 1 are gener-
ated.

2. For each value of the aperiodic autocorrelation sidelobe
(between 0 and 1

2 ), each binary vector generates a dis-
tinct Huffman code (with a distinct PSD).

3. The PSD of each distinct Huffman code is inspected
and its fitting to the required spectral shaping criteria is
assessed.

The line search is performed along two dimensions: the bi-
nary generators vectors bk, that form a finite countable set,
and the aperiodic autocorrelation sidelobe, which forms an
uncountable set. Making the search grid of the values of the
aperiodic autocorrelation sidelobe dense enough, one can be
sure of having inspected all chip pulse shapes (1) with the
minimal theoretical PAPR (Friese’s bound (16) [9]).
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5. PROOF OF CONCEPT: GNSS SIGNALS

Using the method described above, a low-PAPR multitone
pulse (1) can be adapted to match any spectral mask. In this
section we show how such a signal can be used to match a
BOC (Binary Offset Carrier) pulse, used in GNSS. This is
technically relevant because it shows that signals developed
with this approach can be backward compatible. As a sec-
ondary point, in this section we want also to highlight how
BOC signals are a particular case of the signal (1).
GNSS signals are based on BOCmodulation [13] to shape

the pulse of the DS-CDMA signals used for ranging. BOC
signals have been chosen for GNSS because of their capabil-
ity to achieve adequate spectral separation with other GNSS
signals in the same frequency band and for their low PAPR.
BOC signals modulate a rectangular pulse with a square wave
subcarriers, instead of a sinusoidal subcarrier, so that the sig-
nal envelope is constant, provided the number of the harmon-
ics of the square wave is infinite. In this section we show that
a MC pulse of the kind (1) can be shaped so that its PSD is
very similar to the PSD of a BOCsin(1,1) [7] and yet have a
smaller PAPR. A BOCsin(1,1) can be seen as a Manchester
pulse [14, p.55]. In this example we consider an alternative
version of a BOCsin(1,1), obtained by representing a BOC-
sin(1,1) with the model (1), and using a finite number of har-
monics (i.e. subcarriers). According to this representation,
a BOCsin(1,1) can be seen as a signal of the kind (1) whose
frequency code is

cBOC
n =

⎧⎪⎨
⎪⎩

−j 2
πn

, n odd ,

0, n even
(17)

This representation suggests also a flexible and power effi-
cient approach to generate representations of BOC signals on
the satellite payload. If the length of the frequency code is
infinite, we obtain exactly the BOCsin(1,1) as defined in [7].
In this example we consider only 40 harmonics (20 without
the null harmonics) from n = −19 till n = 19. The chip du-
ration is Tc = 0.977μsec. The frequency separation among
the non-zero harmonics is chosen equal toΔf = 2

Tc
= 2.046

MHz. The frequency code identifying the BOCsin(1,1) pulse
containsN = 20 non-zero elements.
Next, we consider Huffman codes of length N = 20 and

we choose a frequency separation equal to Δf = 2
Tc
. In or-

der to perform spectral shaping of the MC pulse (1), we have
to define a metric. Let ρBOC indicate the code envelope of
the code (17) and ρHuff (bk, γ) the envelope of the Huffman
code of the same length, generated by the generator bk and
with PAPR equal to γ dB. Since the PSD of a MC pulse (1)
depends predominantly on the code envelope, we look for the
Huffman code whose envelope has the smallest Euclidean dis-
tance from the envelope of the BOCsin(1,1) code (17). The
best matching Huffman code is thus the one whose envelope

is

ρ
Huff
opt = argmin

ρHuff (bk,γ)

{∥∥ρHuff (bk, γ)− ρBOC
∥∥2
2

}
(18)

For each value of γ, 4862 Huffman codes exist. The optimum
Huffman code has a PAPR γ = 0.015 dB. A BOCsin(1,1)
with 20 non-zero harmonics (corresponding to roughly a 10
MHz one-sided bandwidth) has a PAPR equal to 1.52 dB. The
PSD of the BOCsin(1,1) and that of the optimized pulse are
shown in Fig.1. As it can be observed, the PSD of the opti-
mized MC signal is almost identical to the one of the BOC-
sin(1,1), and thus it could fulfill the current frequency regu-
lations. The PAPR of the optimized MC pulse is one and a
half dB lower. Also the magnitudes of the corresponding au-
tocorrelation functions (Fig.2) are very similar too, with the
optimized MC pulse having even a higher steepness around
the main peak. The pulses can be observed in Fig.3.
The pulse optimised according the metric (18) has a cor-

relation loss of roughly 1 dB with the BOC signal as defined
in (17). This correlation loss comes, however, with the advan-
tage of a smaller PAPR and thus of a higher transmit power
efficiency. With some other metric this correlation loss may
be made even smaller. As a closing remark, we would like to
point out that the metric of this example has been chosen be-
cause it highlights the similarity between existing BOC pulse
shapes and a more general way of designing low PAPR chip
pulse shapes for DS-CDMA signals.

−20 −15 −10 −5 0 5 10 15 20
−100

−95

−90

−85
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−65

−60

−55

f Tc (normalised frequency)
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D
[d
B
W
-H
z]

Opt. MC pulse
BOCsin(1,1)

Fig. 1. Power Spectral Densities (PSD).

6. CONCLUSIONS

In this paper we have presented a methodology to design a
chip pulse shape for a DS-CDMA ranging signal. This chip
pulse pulse design approach is based on a MC modulation
and uses some codes developed for radar pulse compression
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Fig. 2. Magnitudes of the pulse autocorrelation functions.
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Fig. 3. Chip pulse shapes in time domain.

in order to have a deterministic control on the PAPR of the
signal. This approach keeps the PAPR of the MC pulse very
low (it can be at most 3 dB) for any number of subcarriers
and thus it is of great interest for the design of ranging signals
for systems that must be highly power efficient. As an ex-
ample, the proposed approach was applied for GNSS ranging
signal design and the optimized signal showed an extremely
low PAPR (0.015 dB). With the proposed approach for rang-
ing signal design high flexibility and high power efficiency,
which are important future drivers for evolution of GNSS, can
be achieved. Moreover the new chip pulse design approach
can also be backward compatible to current GNSS signals.
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