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ABSTRACT

Genetic regulatory networks undergo rewiring over time in

response to cellular developments and environmental stim-

uli. The main challenge in estimating time-varying genetic

interactions is the limited number of observations at each

time point; thus making the problem unidentifiable. We

formulate the recovery of temporally-rewiring genetic net-

works as a tracking problem, where the target to be tracked

over time consists of the set of genetic interactions. We

circumvent the observability issue (due to the limited num-

ber of measurements) by taking into account the sparsity of

genetic networks. With linear dynamics, we use a compres-

sive Kalman filter to track the interactions as they evolve

over time. Our simulation results show that the compressive

Kalman filter achieves good tracking performance even with

one measurement available at each time point; whereas the

classical (unconstrained) Kalman filter completely fails in

obtaining meaningful tracking.

Index Terms— Genetic networks; Kalman filtering; com-

pressed sensing.

1. INTRODUCTION

Deciphering the complex dynamic nature of genetic regula-

tory networks holds the key to progressive therapeutic meth-

ods for many genetic ailments, including cancer. Much re-

cent work has gone into identifying (or reverse-engineering)

the structure of time-invariant gene regulatory networks from

expression data (e.g., microarrays). Most popular methods in-

clude (probabilistic) Boolean networks, (dynamic) Bayesian

networks, information-theoretic approaches and differential

equations models [1, 2]. The DREAM (Dialogue on Reverse

Engineering Assessment and Methods) project, which built

a blind framework for performance assessment of methods

for gene network inference, showed that there is no correla-

tion between the inference methods used and the performance

scores [3]. Rather, the success of a method is more related to

the details of the implementation than the choice of the gen-

eral methodology

These methods, however, estimate one single network

from the available data, independently of the cellular “themes”

or environmental conditions under which the measurements

were collected. Collections of time-dependent genetic data

from dynamic biological processes such as cancer progres-

sion, response to therapeutic compounds and developmen-

tal processes, are increasing with the new developments in

high-throughput technologies. Clearly, the “static” or time-

invariant view of these dynamical systems does not capture

the temporal rewiring of genetic networks due to internal and

external requirements and stimuli. The current understanding

of the cell as a fixed network of genes and proteins is obsolete

and we must derive new methods that unravel the dynamic

nature of genetic networks by tracking genetic interactions

as they undergo systematic rewiring in response to cellular

development and environmental changes. These changes in

network topology are imperceptible given current viewpoints

and practices.

The inference of time-invariant genetic networks suffers

from the limited number of measurements available to unam-

biguously estimate the network connectivity. The “large p

small n” problem poses a challenge in estimation due to the

identifiability problem, where a large class of network topolo-

gies is consistent with the measurements and no unique solu-

tion exists. This problem is even more severe for temporally-

rewiring networks, where at a given time t, one or very few

measurements or observations are available.

One way to ameliorate this data scarcity problem is to

presegment the time-series into stationary epochs, and infer a

static network for each epoch separately [4]. The main prob-

lem with the segmentation approach is the limited number of

time points available in each stationary segment, which limits

the resulting networks in terms of their temporal resolution

and statistical power. Full resolution techniques, which allow

a time-specific network topology to be inferred from samples

measured over the entire time series, rely on model-based ap-

proaches [5]. However, these methods learn the structure (or

skeleton) of the network but not the detailed strength of the

interactions between the nodes. Dynamic Bayesian networks

(DBNs) have been extended to the time varying case [6]. In
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time-varying DBNs (TVDBN), the time-varying structure and

parameters of the networks are treated as additional hidden

nodes in the graph model [6].

In this paper, we formulate the problem of estimating

time-varying genetic networks as a tracking problem, where

the tracked state is the network connectivity matrix. The

tracking is formulated within a state-space model with the

network connectivity being the state vector. In order to

improve the estimation accuracy with a limited number of

observations, we consider the sparsity of the network. Empir-

ical data indicate that biological gene networks are sparsely

connected, and that the number of regulators per gene is only

a small fraction of the total number of genes. Recent studies

have shown that sparse signals can be recovered accurately

using less observations than what is considered necessary

by the Nyquist sampling theory [7]. This theory, known as

compressed sensing, carries signal recovery and compres-

sion simultaneously; thus reducing the number of required

observations. In general, the recovery of sparse signals is an

NP-hard problem [7]. However, under some restrictions, one

can relax the problem into a convex optimization problem

by adopting the l1 norm rather than the l0 measure [7]. We

adopt a linear state-space model, where the gene expressions

vary over time following a linear differential equation model.

Recovery of the time-varying sparse network connectivity is

achieved using a Kalman filtering-based compressed sensing

approach [8].

In this paper, scalars are denoted by lower case letters,

vectors in R
n are denoted by lower case bold letters, e.g. v

and matrices in R
m×n are denoted by bold upper case letters,

e.g. A. Ip stands for the identity matrix of dimension p × p

and xt indicates the transpose of the vector x.

2. MODEL DESCRIPTION

We model the concentrations of genes, proteins and other

molecules using a time-varying ordinary differential equation

(ODE) model, where the concentration of every molecule is

modeled as a linear combination of the concentrations of the

other molecules in the network. The rewiring nature of the

network is captured by the time-dependent ODE coefficients.

We have

ẋi(k) = −λi(k)xi(k) +

p∑

j=1

aij(k)xj(k) + vi(k), (1)

where i = 1, ..., p, with p being the total number of genes,

xi(k) is the gene expression level at time k and ẋi(k) is its

rate of change, λi is the rate of self degradation of the ith

gene, aij(k) is the influence of gene j on gene i at time k and

vi(k) models the biological and measurement noise. Equation

(1) can be written in matrix form as

z(k) = A(k)x(k) + v(k), (2)

where z(k) = [ẋ1(k), · · · , ẋp(k)]
t, x(k) = [x1(k), · · · , xp(k)]

t,

A(k) = {aij(k)} is the matrix of time-varying interac-

tions with aii = −λi and v(k) = [v1(k), · · · , vp(k)]
t. Let

a(k) ∈ R
p2

be the vectorized form of the matrix A(k),
i.e., a(k) is the vector composed of the concatenation of the

columns of A(k),

a(k) = [a11(k), · · · , a1p(k), · · · , ap1(k), · · · , app(k)]
t. (3)

It can be easily shown that

A(k)x(k) = [Ip ⊗ x(k)t]a(k) = H(k)a(k), (4)

where ⊗ denotes the Kronecker product operator. Hence, Eq.

(2) can be rewritten as

z(k) = H(k)a(k) + v(k), (5)

where H(k) = Ip ⊗ x(k)t. Equation (5) is the observation

equation of the state-space model with state vector a(k). The

state equation models the prior knowledge on the dynamics

of the state vector a(k). In this paper, we consider a random

walk model, which reflects a lack of prior about the network

connectivity dynamics. The state-space model of the network

connectivity is given by

a(k + 1) = a(k) +w(k) (6)

z(k) = H(k)a(k) + v(k), (7)

a(k) is sparse.

with H is as defined in Eq. (5). The state and observation

noise, w(k) and v(k), respectively, are zero mean Gaussian

processes with covariances Qk and Rk, respectively. Since

H(k) ∈ R
p×p2

is underdetermined, the state-space model

in (6)-(7) is not observable, and hence the Kalman filter al-

gorithm is senseless. However, this problem can be circum-

vented if we consider that the state vector a(k) is sparse.

3. COMPRESSIVE KALMAN FILTERING

The state-space estimation problem in (6)-(7), can be solved

using constrained Kalman filtering, which provides the solu-

tion to the following constrained minimum-variance problem:

min
âk

E
ak|zk

[‖ak − âk‖
2]

subject to ‖âk‖1 ≤ ǫ,
(8)

where the l1-norm constraint imposes sparsity and ǫ controls

the amount of sparsity of the vector a(k). The constrained

Kalman filter exploits the additional information and gets bet-

ter filtering performance than the (unconstrained) Kalman fil-

ter provides. There are various methods to incorporate state

constraints in the Kalman filter [9]. If the state constraints are

linear, then all of these different approaches result in the same
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state estimate, which is the optimal constrained linear state es-

timate. If the constraints are nonlinear, then constrained filter-

ing is, in general, not optimal, and different approaches give

different results [10]. The constrained optimization problem

in (8) can be solved using the pseudo-measurement technique

(PM) [11]. PM generates a fictitious observation from the

constraint function by writing the l1 constraint as

‖âk‖1 − ǫ = 0 ⇐⇒ d
t
kâk − ǫ = 0,

dk = [sign(âk(1)), · · · , sign(âk(p
2))]t, (9)

where “sign” is the sign function. Observe that the pseudo

observation matrix dk depends upon the current state esti-

mate. The complete algorithm is listed in Algorithm 1.The

PM stage can be iterated to lessen the effect of base point and

truncation errors associated with linearizing a non-linear con-

straint [11], [8], [12]. The method consists of repeating the

PM stage multiple number of times to get closer and closer to

the actual state estimate. The iteration is necessary because

the constraint occurs around the state estimate rather than the

actual estimate, which causes a shift in the estimate projec-

tion. Thus, repeating the constraint multiple number of times

ensures that the error is reduced to a minimum [12]. We will

now give the algorithm that describes the compressed sensing

Kalman filter as proposed by Carmi et al. [8].

Algorithm 1 Compressive Kalman Filtering

1: Prediction

âk+1|k = âk|k (10)

Pk+1|k = Pk|k +Qk (11)

2: Measurement update

Kk = Pk+1|kH
T (HPk+1|kH

T +Rk)
−1(12)

âk+1|k+1 = âk+1|k +Kk(zk −Hâk+1|k) (13)

Pk+1|k+1 = (I −KkH)Pk+1|k (14)

3: Pseudo-measurement: Let P 1 = Pk+1|k+1 and â1 =
âk+1|k+1.

4: for τ = 1, 2, . . . , Nτ − 1 iterations do

dτ = [sign(âτ (1)), . . . , sign(âτ (p))]T (15)

Kτ = P τdτ (d
t
τP

τdτ + σ2
ǫ )

−1 (16)

âτ+1 = (I −Kτdt
τ )â

τ (17)

P τ+1 = (I −Kτdt
τ )P

τ (18)

5: end for

6: Set Pk+1|k+1 = PNτ and âk+1|k+1 = âNτ .

4. SIMULATION RESULTS

We generate time-varying genetic networks obeying the dy-

namics in Eq. (2). We set the sparsity level at 7%. That is,

the connectivity matrix has 0.07p2 non-zero entries with p be-

ing the number of genes or the dimension of the matrix. To

assess and compare the performance of the algorithm we use

the following error measure

|aij − âij | ≤ αaij (19)

Where aij is the (i, j)th element of the true genetic interac-

tion matrix and âij is the estimate of aij . α is a threshold

parameter less than 1. Here, we fixed α = 0.2. That is, we

assume that the noise level (measurement errors, imperfection

in the model and numerical errors) is about 20%. We count

an error if the estimated interaction value, âij , is not within

20% of the true value, aij . We compare the proposed com-

pressive Kalman filter with the projection method adopt in [2]

for estimating time-varying networks.

We first investigate the effect of the algorithm parameters,

namely, the network size p, the number of measurements n,

the sparsity parameter ǫ and the number of iterations τ . Fig-

ure 1(a) shows the error as a function of the number of genes.

Observe that the state vector size increases exponentially with

the number of genes. Nonetheless, the performance of the

compressive Kalman filter does not seem to be affected by

the large dimension of the state vector (for p = 50, there are

502 = 2500 connections to be estimated). The number of

measurements at each time instant are kept constant equal to

n = 5. With the increase in the network size, the algorithm

shows robustness and better prediction performance than the

projection method adopted in [2], which leads to a uniform

increase in the error with the network size. Figure 1(b) shows

the performance of the algorithm when the number of mea-

surements increases for a network of size p = 50. As ex-

pected, the estimation accuracy increases with the number of

measurements or observations.

Figure 1(c) shows the effect of ǫ, the parameter that con-

trols the sparsity in the estimated network. The network size,

in this simulation, is p = 30 and the sparsity is 7%. It is ev-

ident that the choice of this parameter affects the estimation

accuracy. ǫ is considered to be a prior knowledge on the de-

gree of sparsity in the network. Figure 1(d) shows that the

number of iterations τ has some effect on the accuracy error;

Though, in our simulations, we found that, for a network of

size p = 50, increasing τ from 10 to 50 decreases the error by

less than 1%. However, we observed that an increase in the

number of iterations τ enforces the constraint even more by

making the network sparser; and thus may lead to increasing

the false negative rate. Additionally, the number of iterations

that are required to run for the constraint present a trade off

between the accuracy of the estimate and the available com-

putational power.

Figure 2 shows a ten-gene time-varying network evolv-
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Fig. 1. Effect of algorithm parameters on the estimation accuracy and comparison with the projection method in [2]: (a) error

vs. network size; (b) error vs. number of observations or measurements; (c) error vs. sparsity parameter ǫ; (d) error vs. number

of iterations τ .

(a): Original time-varying network evolving over five time-points.

(b): Compressive Kalman estimated time-varying network with 5 available measurement at each time point.

(c): Compressive Kalman estimated time-varying network with 1 available measurement at each time point.

(d): Classical (unconstrained) Kalman estimated time-varying network.

Fig. 2. Tracking of a 10-gene time-varying network evolving over five time points.
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ing over five time points. The compressive Kalman estimates

of the network with five (resp. one) measurements at each

time point is shown in the second (resp. third) row of Fig.

2. The classical (unconstrained) Kalman estimate is shown in

the fourth row of Fig. 2. It is clear that compressive Kalman

filtering is essential to obtain meaningful tracking of sparse

time-varying genetic networks.

5. CONCLUSION

We formulated the problem of estimating genetic regulatory

networks as a tracking problem of the network connectivity

over time. It is well known that if the system is linear and

observable, then the solution to this problem can be obtained

using the Kalman filter. However, tracking of genetic net-

works is not an observable problem because the number of

measurements is smaller than the number of genes. This is-

sue is circumvented by taking into account the sparsity of the

networks, and using a compressive sensing-based Kalman fil-

ter. We studied the effect of the algorithm on the estimation

accuracy. We observed that the Kalman filter is robust to an

increase in the number of genes, or equivalently an increase

in the dimension of the state vector. The tracking results also

depend on the sparsity parameter, which is a prior knowledge

on the degree of sparsity of the network. Our simulations on

synthetically generated time-varying networks show that the

tracking performance is quite good even for one measurement

at every time point. The performance also improves signifi-

cantly with the number of measurements. At the same time,

the unconstrained Kalman filter fails completely in giving any

meaningful estimation or tracking of the network. Future

research directions will explore tracking sparse genetic net-

works with non-linear system dynamics.
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