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ABSTRACT

We address the Monte Carlo approximation of probability dis-

tributions in high-dimensional spaces. In particular, we inves-

tigate the population Monte Carlo (PMC) scheme, which is

based on an iterative importance sampling approach, and its

extension the mixture-PMC method (MPMC), which models

the importance functions as mixtures of kernels. We propose

an extension of the MPMC method which incorporates adap-

tation of the number of mixture components, and applies a

nonlinear transformation to the importance weights in order

to smooth their variations and avoid degeneracy problems.

We present numerical results that illustrate the performance

improvement attained by the new method.

Index Terms— Importance sampling, population Monte

Carlo, mixture-PMC

1. INTRODUCTION

Computational inference in high-dimensional spaces is a

challenging problem. Various techniques based on the Monte

Carlo methodology [1] have been successfully applied to a

large variety of complex problems. In this work we investi-

gate the population Monte Carlo (PMC) scheme [2]. PMC

algorithms perform iterative importance sampling (IS) by

adapting the proposal probability density functions (pdf’s,

also known as importance functions) according to the latest

samples and importance weights (IW’s) available, so that

they “approach” the static target pdf over the iterations. PMC

methods are sensitive to the selection of the proposal pdf and

may often perform poorly even in low-dimensional problems.

A well known extension of PMC is the mixture-PMC

(MPMC) algorithm presented in [3], which constructs the se-

quence of importance functions as mixtures of kernels. In [3],

a set of rules are put forward for selecting the parameters of

the importance function that minimize the Kullback-Leibler
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divergence (KLD) between the target and the proposal pdf

at each iteration. The rules are developed for mixtures of

Gaussian and Student’s t distributions.

In [4], a simple modification of the PMC scheme was pro-

posed that consists in updating the proposal density based on

nonlinearly transformed IWs (TIWs). This single modifica-

tion can increase the efficiency of the method drastically. In

[5], a MPMC algorithm with TIW’s has also been investi-

gated, showing a considerable improvement in performance

with respect to the original scheme.

In this paper we introduce an extension of the MPMC that

incorporates both nonlinear transformations to the IWs, in or-

der to mitigate weight degeneracy, and an adaptation step to

dynamically select the number of mixture components in the

proposal pdf’s. This modification of the MPMC scheme pro-

vides valuable information about the number of components

required to represent the target pdf and can also alleviate the

computational demands of the algorithm (as it is simpler to

draw samples from mixtures with less components). We have

applied MPMC and the proposed extension to the approxima-

tion of the banana-like target density [6], which is relevant

in inference problems of cosmological parameters. Recently,

the MPMC has been widely applied to the problem of para-

meter estimation in cosmological applications [6] and is the

base of the tool CosmoPMC [7].

The rest of the paper is organized as follows. In Section

2, we review IS and the PMC method. In Section 2.2 we

describe the MPMC method and its Gaussian and Student’s t

extensions. In Section 3 we propose a MPMC algorithm with

TIWs and adaptation of the number of mixture components.

In Section 4 we present numerical results. Finally, in Section

5 we summarize and discuss the contributions of this paper.

2. BACKGROUND

Let θ = [θ1, . . . , θK ]⊤ be a vector of K real random variables

with pdf π(θ), termed the target pdf. The Monte Carlo frame-

work allows to approximate the probability measure π(θ)dθ

and its moments, by means of empirical sums, i.e.,

Eπ[f(θ)] =

∫

f(θ)π(θ)dθ ≈
1

M

M
∑

i=1

f(θ(i)),

EUSIPCO 2013 1569744203
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where f : R
K → R is a real, integrable function of θ,

Eπ[f(θ)] denotes the expectation of f with respect to π(θ)dθ

and {θ(i)}M
i=1 is a random i.i.d. (independent and identically

distributed) sample drawn from π(θ).

2.1. Importance sampling

In many practical cases it is not possible to sample from π(θ)
directly. The importance sampling [1] approach consists in

drawing the samples {θ(i)}M
i=1 from a (simpler) proposal pdf,

or importance function, q(θ), and then computing normalized

IW’s as w(i) ∝ w(i)∗ = π(θ(i))/q(θ(i)) with
∑M

i=1 w(i) = 1.

The integral Eπ[f(θ)] is then approximated by the weighted

sum Eπ[f(θ)] ≈
∑M

i=1 w(i)f(θ(i)).
In order to ensure the asymptotic convergence of this ap-

proximation when M is large enough, it is sufficient to select

q(θ) such that q(θ) > 0 whenever π(θ) > 0, and guarantee

that q(θ) has heavier tails than π(θ) [1].

2.2. Mixture population Monte Carlo algorithm

The PMC method [2] is an iterative IS scheme that generates

a sequence of proposal pdfs qℓ(θ), ℓ = 1, . . . , L, such that

every new proposal is “closer” to the target density π(θ) than

the previous importance function, based on the set of samples

and weights at the (ℓ − 1)-th iteration (ℓ ≥ 2).

The original PMC scheme in [2], however, does not pro-

vide a universal update scheme for the proposals qℓ(θ), ℓ =
1, ..., L. A powerful extension is the mixture-PMC algorithm

[3], which constructs the sequence of proposal pdf’s as mix-

tures of D kernels of the form

qℓ(θ) =
D

∑

d=1

αℓ,dqℓ,d(θ; βℓ,d), (1)

where the mixture weights αℓ,d and the kernel parameters

βℓ,d of each component are adapted along the iterations in or-

der to minimize the KLD between the target and the proposal

pdf, i.e., D(π||qℓ) =
∫

log( π(θ)
qℓ(θ) )π(θ)dθ. In [3], updating

rules for the parameters βℓ,d are provided for the case of mix-

tures of Gaussian and Student’s t distributions. The MPMC

algorithm is outlined in Table 1. In [6] the authors suggest

to discard those mixture components with a very low weight

αℓ,d, to avoid numerical problems in the updating of the pa-

rameters.

2.2.1. Gaussian mixture importance functions

Assume that the proposal pdf qℓ(θ) at iteration ℓ is a mixture

of D, K-dimensional Gaussian kernels of the form

qℓ,d(θ; βℓ,d) = NK(θ; µℓ,d,Σℓ,d), d = 1, . . . , D,

where µℓ,d and Σℓ,d are the mean vector and covariance ma-

trix of each component, respectively. These parameters are

Table 1. Mixture-PMC algorithm [3]

Iteration (ℓ = 1, . . . , L):

1. Generate an i.i.d. sample {θ
(i)
ℓ }M

i=1 from the current

mixture proposal qℓ(θ) in Eq. (1).

2. For i = 1, . . . , M , compute normalized IWs w
(i)
ℓ ∝

π(θ
(i)
ℓ )/qℓ(θ

(i)
ℓ ) and mixture posterior probabilities

ρ
(i)
ℓ,d =

αℓ,dqℓ,d(θ
(i)
ℓ ; βℓ,d)

∑D

k=1 αℓ,kqℓ,k(θ
(i)
ℓ ; βℓ,k)

. (2)

3. For d = 1, . . . , D, update the weights and the parame-

ters of each component as

αℓ+1,d =

M
∑

i=1

w
(i)
ℓ ρ

(i)
ℓ,d and (3)

βℓ+1,d = arg max
βℓ,d

[

M
∑

i=1

w
(i)
ℓ ρ

(i)
ℓ,d log qℓ,d(θ

(i)
ℓ ; βℓ,d)

]

.

updated for the next iteration ℓ + 1 as [3]

µℓ+1,d =

∑M

i=1 w
(i)
ℓ ρ

(i)
ℓ,dθ

(i)
ℓ

αℓ+1,d

and

Σℓ+1,d =

∑M

i=1 w
(i)
ℓ ρ

(i)
ℓ,d(θ

(i)
ℓ − µℓ+1,d)(θ

(i)
ℓ − µℓ+1,d)

⊤

αℓ+1,d

.

2.2.2. Student’s t mixture importance functions

The t mixture has been suggested for importance sampling,

opposite to the Gaussian mixture, because its heavier tails

may capture a wider range of non-Gaussian targets with a

smaller number of components.

Thus, assume that the proposal pdf at iteration ℓ is a mix-

ture of D, K-dimensional Student’s t kernels (with a fixed

number νd of degrees of freedom) denoted

qℓ,d(θ; βℓ,d) = TK(θ; µℓ,d,Σℓ,d, νd), d = 1, ..., D.

We compute γ
(i)
ℓ,d = νd+K

νd+(θ
(i)
ℓ

−µℓ,d)⊤Σ
−1
ℓ,d

(θ
(i)
ℓ

−µℓ,d)
and the

mean and covariance parameters are updated as [3]

µℓ+1,d =

∑M

i=1 w
(i)
ℓ ρ

(i)
ℓ,dγ

(i)
ℓ,dθ

(i)
ℓ

∑M

i=1 w
(i)
ℓ ρ

(i)
ℓ,dγ

(i)
ℓ,d

and

Σℓ+1,d =

∑M

i=1 w
(i)
ℓ ρ

(i)
ℓ,dγ

(i)
ℓ,d(θ

(i)
ℓ − µℓ+1,d)(θ

(i)
ℓ − µℓ+1,d)

⊤

αℓ+1,d

.
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3. ADAPTIVE NONLINEAR MIXTURE-PMC

In this section we introduce a modification of the MPMC

method that incorporates an adaptation mechanism for the

number of mixture components, and performs nonlinear

transformations to the IW’s in order to mitigate the weight de-

generacy phenomenon. The new algorithm is termed adaptive

nonlinear-MPMC (NMPMC).

3.1. Adaptation of the number of components

The MPMC algorithm assumes a fixed number of components

D (which needs to be overestimated in general), hence the fi-

nal outcome of the algorithm does not provide any informa-

tion about the number of components required to adequately

approximate a target pdf π(θ). In this paper we propose an

extension of the MPMC which incorporates an update step

of the number of components D, along the iterations. We

consider an initial number of components D1 and perform

pruning and merging operations to the mixture components,

reducing Dℓ over the iterations ℓ = 2, ..., L.

The pruning operation consists in removing the d-th mix-

ture component when its associated weight falls below a pre-

scribed threshold µprn, i.e., αℓ+1,d < µprn, as suggested in

[6]. The merging operation allows to fuse two similar mix-

ture components qℓ+1,i and qℓ+1,j when the distance Di,j =
D(qℓ+1,i||qℓ+1,j) + D(qℓ+1,j ||qℓ+1,i) is less than a second

threshold µmrg. The parameters of the resulting component

are obtained as the average of the parameters of the original

components. The KLD can be computed exactly in the case of

Gaussian mixtures, and can be approximated by exact Monte

Carlo sampling in the case of t mixtures. Up to one merging

and any number of pruning operations are performed at each

iteration of the algorithm. The thresholds µprn and µmrg are

set a priori.

3.2. Nonlinear transformation of the IWs

IS and PMC methods usually suffer from degeneracy of the

IWs, which present extreme variations leading to a very low

number of “effective” samples (those with non-negligible

IW’s). In order to avoid this problem, we perform a nonlinear

transformation of the IWs by “clipping” them (as described

in detail in [4, 5]). Choosing an integer MT < M , the

unnormalized TIWs w̄
(i)∗
ℓ are computed as

w̄
(i)∗
ℓ = min(w

(i)∗
ℓ , T MT

ℓ ), i = 1, . . . , M, (4)

where w
(i)∗
ℓ = π(θ

(i)
ℓ )/qℓ(θ

(i)
ℓ ) is an unnormalized IW and

the threshold value T MT

ℓ corresponds to the MT -th highest

IW1. This transformation leads to flat TIW’s in the region of

interest of θ, and guarantees a baseline of MT effective sam-

ples. The proposed method is outlined in Table 2.

1Let i1, ..., iM be an ordering of the samples at the ℓ-th iteration such

that w
(i1)∗
ℓ

≥ w
(i2)∗
ℓ

≥ · · · ≥ w
(iM )∗
ℓ

. Then, T
MT

ℓ
= w

(iMT
)∗

ℓ
.

Table 2. Adaptive nonlinear MPMC algorithm

Iteration (ℓ = 1, . . . , L):

1. Generate a sample {θ
(i)
ℓ }M

i=1 from the current mixture

proposal qℓ(θ) in Eq. (1) with D = Dℓ components.

2. For i = 1, . . . , M , compute unnormalized IWs w
(i)∗
ℓ =

π(θ
(i)
ℓ )/qℓ(θ

(i)
ℓ ) and mixture posterior probabilities

ρ
(i)
ℓ,d as in Eq. (2), with D = Dℓ.

3. For i = 1, . . . , M , compute unnormalized TIW’s

using Eq. (4) and normalize them as w̄
(i)
ℓ =

w̄
(i)∗
ℓ /

∑M

j=1 w̄
(j)∗
ℓ .

4. Update the component weights αℓ+1,d, d = 1, ..., Dℓ,

and parameters βℓ+1,d of each component according to

Eq. (3), but using TIW’s w̄
(i)
ℓ instead of IW’s w

(i)
ℓ .

5. Set D̃ = Dℓ. Compute the distance Di,j between each

pair of mixture components qℓ+1,i and qℓ+1,j , for i, j =
1, . . . , Dℓ.

If Di,j < µmrg, merge components i and j. The over-

all weight es computed as αℓ+1,i = αℓ+1,i + αℓ+1,j

and the parameters as µℓ+1,i = µℓ+1,i/2 + µℓ+1,j/2
and Σℓ+1,i = Σℓ+1,i/2 + Σℓ+1,j/2. Remove the j-th

component setting αℓ+1,j = 0 and D̃ = D̃ − 1.

6. For i = 1, . . . , D̃, if αℓ+1,i < µprn, remove the

i-th component setting αℓ+1,i = 0 and αℓ+1,j =

αℓ+1,j/
∑D̃

k=1 αℓ+1,k, j = 1, . . . , D̃.

7. Update D̃ according to the number of pruned compo-

nents and set Dℓ+1 = D̃.

4. COMPUTER SIMULATIONS

To illustrate the performance of the original MPMC and the

new adaptive NMPMC, we apply both schemes to the approx-

imation of a 10-dimensional target pdf π(θ), by means of a

mixture of Gaussian and Student’s t kernels.

4.1. Simulation setup

Following [6], we consider a target pdf π(θ) constructed from

a Gaussian pdf π(θ′) = N10(θ
′; 0,Σ) with covariance matrix

Σ = diag(σ2
1 , 1, . . . , 1). The variable of interest θ is con-

structed from the auxiliary variable θ′ by twisting the second

coordinate according to θ2 = θ′2 − β(θ′21 − σ2
1) and keeping

the rest of the variables unchanged, i.e.,

θ = [θ′1, θ
′

2 − β(θ′21 − σ2
1), θ′3, . . . , θ

′

10]
⊤.

We assume that the twist parameter is β = 0.03 and σ2
1 =

100. This transformation results in a banana-shaped density

3
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Fig. 1. Contour plot of the marginal target density π(θ1, θ2).

in the first two dimensions, which is represented in Figure 1.

This pdf is difficult to explore and provides a realistic scenario

in many cosmological problems.

We have applied the MPMC and the adaptive NMPMC

to the approximation of the described target pdf with impor-

tance functions built as Gaussian and t mixtures. In all the

simulations, we consider an initial proposal pdf consisting of

D1 = 10 components q1,d, d = 1, ..., D1, with random mean

vectors µ1,d ∼ N10(µ1,d; 0,Σ0/5), and a common covari-

ance matrix Σ1,d = Σ0, where Σ0 = diag(200, 50, 4, . . . , 4).
In the case of t mixtures, the number of degrees of freedom

has been set to νd = 9, for every d.

In each simulation run we have computed the normal-

ized effective sample size (NESS) at all iterations as M e
ℓ =

[M
∑M

i=1(w
(i)
ℓ )2]−1 and M̄ e

ℓ = [M
∑M

i=1(w̄
(i)
ℓ )2]−1 for the

MPMC and the NMPMC schemes, respectively. A NESS

value close to 1 suggests a good agreement between the pro-

posal and the target pdf. However, it is generally not enough

to establish that the algorithm has converged to the true target,

for example, when the target presents multiple modes.

As a measure of how well a set of samples {θ
(i)
ℓ }M

i=1

drawn from the mixture proposal pdf qℓ(θ) represents the tar-

get density π(θ) we have computed the KLD between the

corresponding Gaussian target pdf π(θ′) and the Gaussian ap-

proximation of the untwisted sample set {θ
′(i)
ℓ }M

i=1, obtained

by the inverse transformation θ
′(i)
ℓ,2 = θ

(i)
ℓ,2 + β[(θ

(i)
ℓ,1)

2 − σ2
1 ].

We have performed 104 independent simulation runs of

each algorithm, both in the Gaussian and t cases. We have

studied two settings with L = 20 iterations and a different

number of samples per iteration, M .

4.2. Large sample size

The number of samples per iteration has been set to M =
104. The threshold parameter for the removal of a mixture

component has been set to µprn = 0.002. In the adaptive

NMPMC scheme, the threshold parameter for the fusion of

two components has been set to µmrg = 3, and the clipping

parameter to MT = 100 samples.

In Figure 2 the evolution of the median KLD (left)

and mean NESS (center) for the MPMC and the adaptive

NMPMC algorithms are plotted, for the Gaussian and t cases.

The median has been preferred to the mean because of its

robustness against outliers. The adaptive NMPMC scheme

obtains a lower KLD and a higher NESS, with both mixture

families. The Gaussian mixture provides better results, in

terms of KLD and NESS, than the t mixture for both algo-

rithms. This occurs because samples drawn from the tails of

the t components are not usually representative and obtain

low IWs. The evolution of the number of components Dℓ

(Figure 2, right) is similar in all the schemes, converging in

average to a value between 6 and 7.

In Table 3 statistics on the values of KLD, NESS and Dℓ

after the last iteration ℓ = L are displayed. It can be observed

that the original MPMC schemes present an extremely high

KLD variance and also a higher variance of NESS and Dℓ

than the proposed NMPMC techniques.

4.3. Reduced sample size

In this case, the number of samples per iteration has been set

to M = 2000. The threshold parameters have been set to

µprn = 0.01 and µmrg = 2, and MT = 100 samples.

Figure 3 displays the results obtained in this setting. In

this scenario, the MPMC performs poorly with both mixture

families, obtaining an increasing KLD, a NESS close to 0

and a mean DL close to 1. On the contrary, the proposed

NMPMC performs similarly to the M = 104 case, with a

slightly higher KLD due to the fact that with a lower number

of samples, the tails of the target pdf are less accurately rep-

resented. The number of components Dℓ still attains a similar

final value and the NESS converges to a high value as well.

In Table 4 statistics on the final values of the KLD, NESS and

Dℓ for the NMPMC are also displayed for comparison. It can

be seen that the proposed scheme presents stable results even

in this low data scenario.

5. CONCLUSIONS

In this paper we have addressed the problem of Monte Carlo

approximation of target probability distributions in high di-

mensional spaces. We have studied the recently proposed

mixture-PMC scheme and proposed an extension which is

stable (in terms of the NESS) in high-dimensional setups and

provides information about the number of components re-

quired to adequately represent the pdf of interest. We have

compared the performance of the original and the proposed

schemes in the cases of Gaussian and t mixtures, in two sce-

narios with a different number of samples (hence, with a dif-

ferent computational effort). We present numerical results

that show that the proposed scheme clearly outperforms the

original one. We also show that the Gaussian mixture should

be preferred for this problem.

4
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Fig. 2. Performance of MPMC vs NMPMC, with M = 104, Gaussian and t mixtures (labeled as G- and t-, respectively).

Median KLD (left), mean NESS (center) and mean number of mixture components Dℓ (right) along the iterations.

Med KLD Mean KLD Std KLD Mean NESS Std NESS Mean DL Std DL

G-MPMC 0.0445 1.63 · 105 1.47 · 107 0.6286 0.2699 6.084 2.242

t-MPMC 0.1601 1.06 · 1026 5.76 · 1027 0.5069 0.2492 6.013 2.501

G-NMPMC 0.0275 0.0307 0.0139 0.9370 0.0176 6.401 1.167

t-NMPMC 0.1106 0.1147 0.0254 0.7923 0.0148 7.065 1.310

Table 3. Median, mean and standard deviation for KLD, NESS and Dℓ, for MPMC and NMPMC with M = 104 and ℓ = L.
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Fig. 3. MPMC vs NMPMC with M = 2000. Median KLD (left), mean NESS (center) and mean Dℓ (right) along the iterations.

Med KLD Mean KLD Std KLD Mean NESS Std NESS Mean DL Std DL

G-NMPMC 0.1182 0.1287 0.0514 0.8892 0.0153 5.573 1.276

t-NMPMC 0.1832 0.1949 0.0627 0.7512 0.0142 5.705 1.295

Table 4. Median, mean and standard deviation for KLD, NESS and Dℓ, for NMPMC with M = 2000 and ℓ = L.
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