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ABSTRACT
Blind Source Separation (BSS) aims at finding a factorization
of multi-spectral data into a mixing matrix and a source ma-
trix. In this field, Non-negative Matrix Factorization (NMF)
assumes that both matrices are non-negative. Very few NMF
algorithms are further able to encompass sparsity in a trans-
formed domain because of the difficulty in enforcing the so-
lution to be non-negative and sparse simultaneously in two
different domains. In this article, we adapt the framework
of an algorithm, non-negative GMCA, in order to overcome
this issue for a redundant transform, using modern proximal
calculus techniques. We therefore obtain solutions satisfying
both constraints simultaneously contrarily to other algorithms
which apply them alternately. We provide the first compari-
son of analysis and synthesis sparse formulations in BSS and
show that the analysis sparse formulation dramatically im-
proves the identification of sources from noisy mixtures of
synthetic nuclear magnetic resonance (NMR) spectra.

Index Terms— BSS, NMF, sparsity, wavelets, analysis

1. INTRODUCTION

In Blind Source Separation (BSS), one has access to m mea-
surement vectors yi,·, assumed to result from mixtures of a
limited number r of unknown sources sj,· which are n sam-
ples long. The linear mixture model further assumes that
these mixtures can be written under the form:

yi,· =

r∑
j=1

aijsj,· + zi,· , ∀i ∈ {1, ..,m}, (1)

where the aij are unknown mixture coefficients, and the
zi,· vectors are added in order to account for measurement
noise and model imperfections. This can be conveniently re-
cast under the form Y = AS + Z where the measurements
yi,·, the sources sj,· and the noise zi,· are respectively rows
of Y, S and Z. For i.i.d. Gaussian noise, the maximum-
likelihood estimate is then provided by the standard problem:

argmin
A, S

1

2
||Y −AS||22, (2)

emails: firstname.lastname@cea.fr

with the notation ||X||p = p

√∑
ij |xij |p (Frobenius norm for

p = 2). This problem however has an infinity of minima. It is
therefore useful to add some more information on the sources
S and/or the mixing matrix A in order to privilege solutions
with a desired structure.

In this article, we focus on the case where A and S coeffi-
cients are required to be non-negative, termed Non-Negative
Matrix Factorization (NMF) [1, 2]. This assumption arises
naturally in many applications such as clustering [3] or audio
processing [4] for instance. Indeed, sources can for example
represent power spectra, which are non-negative, and the mix-
tures can represent concentrations, which cannot be negative
either. This constraint can be dealt with in a geometrical way
[5] or through the minimization of a cost function such that
in problem (2). In this category, most algorithms alternately
update A and S. Indeed, conveniently, the subproblem of re-
covering a non-negative S from problem (2) with A fixed is
convex; and vice-versa for the subproblem in A.

The non-negativity of A and S is often not sufficient for
their recovery. In non-negative ICA [6], one further assumes
the independence of the sources. However, this approach is
sensitive to noise since it does not model it. Sparsity, on the
other hand, can help handle it more efficiently. We give a
short introduction about this prior in the next section, before
presenting our new sparse NMF algorithm.

2. SPARSITY AND NMF: STATE OF THE ART

A sparse signal is a signal which concentrates its information
into only a few large non-zero coefficients, or can be well ap-
proximated in such a way. This knowledge about the signal
can be used as a prior, with a sparse regularization of the type
λ||x||0 which for instance counts non-null coefficients in x
and therefore limits their number. However, this regulariza-
tion is not convex and leads to combinatorial problems. The
use of || . ||1 is consequently often preferred, as the closest
convex surrogate to the `0 pseudo-norm.

Sparsity priors were shown to significantly improve the
results in NMF and they can be applied in a variety of ways.
In [7], Hoyer constrains a sparsity level ||si,·||1/||si,·||2 for
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Algorithm 1 nGMCA framework
Require: Y, K

1: initialize A0, S0 and λ1
2: for k ← 1,K do
3: Normalize the columns of Ak−1
4: Sk ← argmin

S≥0

1
2‖Y −Ak−1S‖22 + λk‖S‖1

5: Ak ← argmin
A≥0

1
2‖Y −ASk‖22

6: Select λk+1 ≤ λk
7: end for
8: return AK , SK

each row of S. Kim & Park [3] and Zdunek & Cichocki’s
[8] use a regularization of type

∑
j ||s·,j ||21 where the s·,j are

columns of S. It is also possible to use the `1 regularization
||S||1 such as in [9].

A signal can however be sparse in a domain other than
the direct domain: its sparsity depends on the basis or dic-
tionary in which it is expressed. A sinusoid is sparse in the
Fourier domain for instance, since it can be encoded with one
coefficient in this domain, while in the direct domain most of
its coefficients are non-zero (not sparse at all). The fact that
most natural signals can be expressed in a sparse way using
an appropriately chosen basis such as wavelets, has been
used effectively in BSS by Zibulevsky & Pearlmutter [10]
and Bobin et al.’s Generalized Morphological Component
Analysis (GMCA) [11]. Still, few algorithms use sparsity in
a transformed domain together with non-negativity in the di-
rect domain [12]. To our knowledge, none provides solution
optimally satisfying both at the same time since they handle
the constraints alternately. In this article we give an overview
of Rapin et al.’s algorithm [9] and its proximal approach (sec-
tion 3). We then present the major modifications allowing
to find solutions optimally verifying non-negativity in the
direct domain, and sparsity in a redundant transformed do-
main (section 4). We finally compare on realistic data the two
formulations induced by this kind of prior —analysis and
synthesis— together with other state-of-the-art algorithms
(section 5).

3. NON-NEGATIVE GMCA

In [9], Rapin et al. proposed their non-negative GMCA
(nGMCA)1, described in Algorithm 1, which adapted GMCA
to NMF by adding the non-negativity constraint. It aims at
solving the following problem:

argmin
A≥0, S≥0

1

2
||Y −AS||22 + λ||S||1, (3)

The subproblem in A (line 4 of Algorithm 1) can be ef-
ficiently solved with proximal splitting methods such as the

1termed (S)rGMCA in [9]

# Regularization Proximal operator
1 ix≥0(x) [x]+ = max(x, 0)
2 λ||x||1 Softλ(x) = sign(x)[ |x| − λ ]+
3 λ||x||1 + ix≥0(x) [Softλ(x)]+
4 i(xW)≥0(x) x+ [−xW]+W

T

5 λ||xWT ||1 x− ( argmin
||u||∞≤λ

||x− uW||22)W

6 i||x||∞≤λ(x) x− Softλ(x)

Fig. 1. Regularizations and their proximal operators (with x
a row vector and W such that WTW = I)

forward-backward (FB) algorithm [13]. This algorithm al-
lows the minimization of the sum of a convex and differen-
tiable function f , and a non-differentiable proper convex and
lower semi-continuous function g. In the case of the update
of A, f is the data fidelity term f(A) = 1

2 ||Y −AS||22, and
g(A) = iA≥0(A) is the characteristic function of the set
of non-negative matrices, which enforces the non-negativity
constraint on A. The algorithm requires the gradient of f ,
which is straightforward to compute, and the proximal opera-
tor of g which is provided in table 1 (proximal #1). The sub-
problem in S is solved similarly, with proximal #3. Efficient
implementation details can be sought in [14].

The λ parameter controls the sparsity of the result. As in
GMCA, it is changed during the algorithm to fulfill two main
purposes. The first is to help separating the sources: a large
λ at the beginning of the algorithm favors large and discrimi-
nating coefficients of S and therefore helps providing a rough
estimation of the mixing directions in A. Decreasing it after-
wards allows refinement of the solution. The second purpose
is to denoise the signal. Indeed, unlike the sources, Gaus-
sian noise is not sparse and is spread over all the coefficients.
Keeping a final λ of the order of the noise level on the gra-
dient (κσσMAD with κσ ≈ 1 and σMAD the Median Absolute
Deviation estimate which can be computed online) prevents
a substantial amount of noise from entering the solution. In
between, λ is decreased linearly.

4. REDUNDANT SPARSE REGULARIZATION

To date, regularization in another basis has barely been used
for NMF before, because of the technical difficulties in dea-
ling with two domains at the same time. Still, signals are
rarely sparse in the direct domain, while they are commonly
sparse in the wavelet domain. In particular, redundant trans-
forms were shown to significantly improve reconstructions
[15]. In the next, we consider redundant wavelets W from
the Rice wavelet toolbox2, which satisfy WTW = I (tight
frames) after some renormalization. However, such redun-
dant transforms can be used to apply a sparse prior with two
formulations which have very different behaviors [16, 17].

2http://dsp.rice.edu/software/
rice-wavelet-toolbox

2



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

4.1. Synthesis formulation

The synthesis formulation consists in reconstructing the
sources in the redundant transformed domain. S is conse-
quently considered as synthesized by as few atoms as possi-
ble from the redundant dictionary. The update of the wavelet
coefficients SW is then expressed as:

argmin
(SWW)≥0

1

2
||Y −ASWW||22 + λ||SW ||1, (4)

At the end, S = SWW. The domain transform provides a
new difficulty compared to sparsity in the direct domain. In-
deed, there is no convenient way to compute the proximal
operator of g(S) = λ||SW ||1 + iSWW≥0(S), so that one
cannot use the FB algorithm anymore for the update of S.
Instead, one can apply the generalized forward-backward al-
gorithm (GFB) [18], which considers g as the sum of two
convex lower semi-continuous functions g1(S) = λ||SW ||1
and g2(S) = iSWW≥0(S) and which requires their proximal
operator, provided in table 1 (repectively proximal #1, and
proximal #4 for which the derivation is not given because of
the lack of space).

4.2. Analysis formulation

It is essential to notice that in the previous formulation, SWT

is generally not equal to SW . Indeed, while WTW = I,
WWT 6= I. In the analysis formulation, one therefore di-
rectly reconstructs S in the direct domain while penalizing
correlations between the sources and the dictionary:

argmin
S≥0

1

2
||Y −AS||22 + λ||SWT ||1, (5)

The minimization is carried out in the same way than in the
synthesis formulation, but with proximal #5 instead of proxi-
mal #4. However, proximal #5 is no more analytic and needs
to be computed through a subroutine (using the FB algorithm
with proximal #6 for instance).

5. EXPERIMENTS

5.1. Settings

In physical applications, molecules can be identified by their
specific Nuclear Magnetic Resonance (NMR) spectra. In this
section, we evaluate the algorithms on simulated realistic
data, using m = 32 mixtures of r = 15 NMR spectra of
natural molecules, with n = 1024 samples each. The mixing
matrix A is drawn as the absolute value of an i.i.d Gaussian
random matrix. The peaks localizations were found in the
Spectral Database for Organic Compounds, SDBS3. In or-
der to account for the acquisition imperfections, they were

3http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/
cre_index.cgi
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Fig. 2. NMR spectra of 4 chemical compounds.

convoluted with a Laplacian kernel with 4 samples width
at half-maximum. Some of the obtained sources are shown
in figure 2. They are naturally non-negative and already
significantly sparse in the direct domain. They can how-
ever benefit from wavelet-sparsity since they are continuous.
This added information is especially helpful in these difficult
settings, with few measurements and spectra which can be
highly overlapping. Since the peaks are very narrow, we
used Daubechies-4 wavelets with only 2 levels. For the three
nGMCA-based algorithms, κσ is set to 1 and never changed.
The data matrix Y is given as Y = AS + Z where Z is a
Gaussian noise matrix. An example of mixture is provided in
figure 3.

Our algorithm is compared with ALS [1] as a standard
approach for NMF; Hoyer’s algorithm [7] and Kim & Park’s
algorithms [3] which are publicly available sparse NMF al-
gorithms; and the regular nGMCA with sparsity in the direct
domain. In Kim & Park’s algorithm the standard settings are
used; and in Hoyer’s algorithm, the required sparsity coeffi-
cient is tuned using the ground truth data.

5.2. Influence of the Noise

In [19], Vincent et al. have proposed several scale-invariant
criteria to evaluate the performances of BSS techniques. In
particular, they propose the Source Distortion Ratio (SDR)
for an estimated source s:

SDR(s) = 10 log10

(
||starget||22
||s− starget||22

)
, (6)

where starget is the projection of s on the target reference
source. As stated in [19], this criterion is a global perfor-
mance measure taking into account all the elements of the

3
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Fig. 5. Example of reconstruction (mannitol, SNRY = 15dB)
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Fig. 3. Example of mixture (main component: mannitol,
SNRY = 15dB)
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Fig. 4. SDRS with respect to the level of noise SNRY (ave-
rage of 24 synthetic NMR data simulations)

reconstruction, i.e. a correct separation, efficient denoising
and little artifacts left by the algorithm. The larger this cri-
terion, the better the reconstruction. Figure 4 shows the
mean SDR of the sources in S for several levels of noise.
The amount of noise is provided in term of SNR on Y (the

smaller SNRY , the noisier). Logically, nGMCA performs
already significantly well compared to other algorithms since
it was specifically designed to handle ill-conditioned settings
and noise, without any tuning. However, synthesis-sparsity
provides an additional gain of 1dB, and analysis-sparsity 3dB
even more. This tends to corroborate the interest of analysis
formulations over synthesis formulations on natural signals
which was already observed for inverse problems [16, 17].

5.3. Separation and Denoising

The influence of the wavelet transform can be seen on the
example of a source reconstruction in figure 5. The added
wavelet-sparsity information in the analysis formulation pro-
vides both a better denoising of the spectrum (around sam-
ple 300 for instance) and lesser interferences (around sam-
ple 450). Also important is that the wavelet-sparse prior pre-
serves the sharpness of the peaks, which would have been lost
with a smooth regularization of the variations.

6. CONCLUSION

nGMCA is able to exactly deal with the non-negative and
sparse priors which provides an appreciated robustness in the
complex settings we have studied (few measurements, corre-
lated sources, noise) compared to other algorithms, while not
needing any tuning of its sparsity parameter.

In this article, we have further developed this ability to
handle a sparse prior in a redundant domain, different from
the one where the non-negativity applies. This property was
shown to be efficient for both separation and denoising of
natural signals compared to other methods. To our know-
ledge, we provide here the first comparison of synthesis- and
analysis-sparse BSS and corroborate the advantage of the ana-
lysis formulation for the reconstruction of natural signals.

Further work will make use of this ability in order to se-
parate highly correlated sources, including signals with a si-
gnificant baseline.
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ized Forward-Backward Splitting,” Tech. Rep., Preprint
Hal-00613637, 2011.

[19] Emmanuel Vincent, Rémi Gribonval, and Cédric
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