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ABSTRACT

We derive a linear minimum mean square error estimator for sparse
vector estimation from an underdetermined set of linear equations.
The derivation of the estimator uses a prior distribution conditioned
on the support set of the underlying sparse vector. The estimator is
used in the architecture of the standard orthogonal matching pursuit
algorithm to achieve a better performance.

Index Terms— Bayesian estimation, minimum mean square er-
ror estimation, sparse estimation, compressed sensing.

1. INTRODUCTION

In recent years the problem of estimating a sparse vector from an
underdetermined set of linear measurements has recieved consid-
erable interest. In this paper we consider the application area of
Compressed Sensing (CS) [1]. Let us state the standard CS problem
where we estimate a sparse signal x ∈ Rn from the linear measure-
ments

y = Ax+w, (1)

where A ∈ Rm×n is a matrix representing the sampling system, y ∈
Rm represents a vector of measurements and w ∈ Rm is additive
noise representing measurement errors. A K-sparse signal vector
consists of at most K non-zero scalar components. We consider the
setup K < m < n (underdetermined system of linear equations),
the task is to reconstruct x from y as x̂. For a sparse signal vector
x = [x1, x2, . . . , xn]

>, the support set I ⊂ {1, 2, . . . , n} is defined
as I = supp(x) = {i : xi 6= 0}. For a K-sparse vector x ∈ Rn,
|I| = ‖x‖0 ≤ K, where |I| denotes the cardinality of I. In this
paper, we assume that |I| = K. For CS reconstruction, three main
approaches are used in the literature: (1) convex relaxations [1, 2,
3, 4, 5], (2) Bayesian methods [6, 7, 8, 9] and (3) greedy searches
[10, 11, 12]. Among these three approaches, greedy search solutions
are computationally simpler. In this paper, we endeavor to improve
greedy search methods using Bayesian estimation principles.

In greedy searches, the main tasks are finding the support-set I
of the underlying sparse vector x and then estimating the non-zero
values. For example, the orthogonal matching pursuit (OMP) [10]
algorithm detects the non-zero coordinates sequentially. OMP uses
matched filter based detection and least-squares based estimation.
The standard OMP does not use a Bayesian estimation framework.

Let us consider a scenario where the statistics p(x) of the un-
known sparse vector x is known a piori. In that case, improvement
of greedy search algorithms using the Bayesian framework remains
as a challenging task. In this pursuit, [13] incorporates the minimum

This work was partially supported by the Swedish Research Council un-
der contract 621-2011-5847.

mean square (MMSE) estimate of the non-zero coefficients where
it is assumed that the non-zero coefficients are iid Gaussian. The
technique of [13] only improves signal value estimation, but not the
non-zero coefficient detection. It is interesting to use the MMSE and
linear MMSE (LMMSE) estimator for CS reconstruction. The stan-
dard MMSE estimator can be found by minimizing the Mean Square
Error (MSE) with respect to the posterior distribution p(x|y). The
MMSE estimator was pursued in [7, 8] and we note that the MMSE
estimate is computationally intractable in general due to an exhaus-
tive search requirement over all possible support sets. To achieve a
practical solution, approximations are important. In this regard, we
note that [7] provides an approximation of the standard MMSE esti-
mator by a truncated version. We mention that a convex method for
estimating sparse vectors from noisy linear measurements may use
`1-norm penalized least squares, such as in standard LASSO algo-
rithm [2, 6, 5]. The `1-penalized estimator can be considered as the
Maximum A Posteriori estimator when the source has a Laplacian
prior distribution.

In this paper, we develop a LMMSE estimator where we mini-
mize the MSE of x̂i with respect to the conditional prior distribution
p(x|i ∈ I). This is different from the standard LMMSE estima-
tor which minimizes the MSE with respect to the prior distribution
p(x). We use the conditional prior LMMSE estimator to modify
standard greedy algorithms, for example the OMP and Projection
based OMP (POMP) [14] algorithms. The new algorithms are re-
ferred to as Conditional Prior based OMP (CpOMP) and Conditional
Prior based POMP (CpPOMP). Through simulations, we evaluate
the performance of the CpOMP and CpPOMP algorithms showing
that they provide better performance than standard OMP and POMP
in terms of lower MSE and support cardinality error.

Notation: In this paper we write Ip for the p×p identity matrix.
We let A = [a1,a2, . . . ,an] have column vectors of unit length and
use AI ∈ Rm×|I| to denote the matrix consisting of the columns of
A indexed by i ∈ I. We use (.)> and (.)−1 for the matrix transpose
and inverse repectively. The expectation value of a random variable
is denoted by E[.] and z|H is used to for the random variable z
conditioned on H , i.e. z|H ∼ p(z|H). We use ∅ to denote the
empty set.

2. LMMSE ESTIMATION OF SPARSE VECTORS

The LMMSE estimator or Wiener filter is one of the fundamental
tools in signal processing. It is used in a multitude of applications
and is described in several textbooks [15, 16]. The LMMSE estima-
tor of a random variable x from observations of a random variable
y, x̂ = b>y + c, is derived by minimizing the MSE

MSE = E[(x− x̂)2]
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with respect to b and c, where the expectation value is taken with
respect to the (joint) probability distribution p(x,y) of x and y. The
LMMSE estimator is found to be

x̂ = E[x] +C(x,y)C(y)−1(y − E[y]) (2)

where C(x,y) = Cov(x,y) = E[xy>]−E[x]E[y>] and C(y) =
Cov(y,y).

For random sparse vectors the standard MMSE estimator of x
given y in (1) is given by [7, 8]

x̂ = E[x|y] =
∑
|I|=K

p(I|y)x̂|I

where x̂|I is the MMSE estimator of x given that supp(x) = I.
The probability p(I|y) can be computed using Bayes theorem

p(I|y) = p(y|I)p(I)
p(y)

where p(I) = Pr(supp(x) = I). When xI ∼ N(0, σ2
xIK) and

w ∼ N(0, σ2
wIm) are uncorellated, we find that

p(y|I) ∝ det(C(y|I))−1/2e−
1
2
y>C(y|I)−1y

where C(y|I) = σ2
xAIA

>
I + σ2

wIm. We see that the MMSE esti-
mator is computationally intractable in general since the probability
p(y|I) needs to be evaluated for all support sets.

3. CONDITIONAL PRIOR AND LMMSE

The main difficulty of sparse estimation is to determine whether a
component is in the support set or not. In this section, we develop an
LMMSE estimator under a conditional prior distribution p(x|Hi),
where Hi is a hypothesis about the support set. After estimation we
then choose the hypothesis which best describes the measurements.
An exhaustive search corresponds to setting Hi = {Ii = I} for
i = 1, 2, . . . ,

(
n
K

)
. Since an exhaustive search is computationally

intractable for large systems we instead consider the least restrictive
hypothesis possible, namely Hi = {i ∈ I} for i = 1, 2, . . . , n.
Under the hypothesis i /∈ I, the MMSE estimator of xi is the trivial
estimator

x̂i|(i /∈ I) = 0

To find the LMMSE estimator for x̂i|(i ∈ I), we need to take the
distributions p(I) and p(x|I) into account.

3.1. Noise free and uncorrelated signals

For simplicity we first consider the noise-free case with uniformly
distributed support sets, i.e. p(I) =

(
n
K

)−1, w = 0. We let the
components of xI |I be uncorrelated with zero mean and variance
σ2
x. Under the hypothesis i ∈ I the MSE of the linear estimator
x̂i|(i ∈ I) = b>y becomes

MSE|(i ∈ I) = E
[
(xi − b>y)2|i ∈ I

]
= EI

 (1− b>ai)
2σ2

x +
∑

j∈I\{i}

(b>aj)
2σ2

x

∣∣∣∣∣∣ i ∈ I


= (1− b>ai)
2σ2

x +
∑
j 6=i

(b>aj)
2σ2

xPr(j ∈ I|i ∈ I) (3)

where we used that E[.] = EI [Ex|I [.]]. We find that

Pr(j ∈ I|i ∈ I) =
(
n−2
K−2

)(
n−1
K−1

) =
K − 1

n− 1
= ρ1

for j 6= i. Now we state the following proposition.

Proposition 1. Minimizing (3) with the condition K > 1 gives the
LMMSE estimator

x̂i|(i ∈ I) =
a>i (AA>)−1y

ρ1 + (1− ρ1)a>i (AA>)−1ai

. (4)

Proof. The Mean Square Error MSE|(i ∈ I) can be written as

MSE|(i ∈ I) = σ2
x − 2σ2

xb
>ai

+ σ2
xb
>
(
(1− ρ1)aia

>
i + ρ1AA>

)−1

b

Minimizing with respect to b we find that

b =
(
(1− ρ1)aia

>
i + ρ1AA>

)−1

ai

Using the Sheerman-Morrison-Woodbury formula [17] gives us that

x̂i|(i ∈ I) =a>i

(
(1− ρ1)aia

>
i + ρ1AA>

)−1

y

=a>i (ρ1AA>)−1y

− (1− ρ1)
a>i (ρ1AA>)−1aia

>
i (ρ1AA>)−1y

1 + (1− ρ1)ai(ρ1AA>)−1ai

=
a>i (AA>)−1y

ρ1 + (1− ρ1)ai(AA>)−1ai

This proves the proposition.

We see that the estimator (4) converges to the LMMSE estima-
tor with unconditional prior in the limit ρ1 → 1, i.e. x̂i → e>i A

†y
where (.)† denotes the Moore-Penrose pseudoinverse. In the limit
ρ1 → 0, the estimator converges to x̂i = e>i A

†y/a>i (AA>)−1ai.
This estimator was earlier derived in [18], using an alternative ap-
proach, where it was used only in the detection step of OMP. For
K = 1, the minima of (3) is non-unique. The solution minimizing
||b||2 is given by

x̂i|({i} = I) = a>i y

In each iteration of OMP, one new element is included in the
estimated support set. Given a partially estimated support set Is,
with |Is| = s ≤ K, OMP assumes that Is ⊂ I and estimates
the components of xIs . The LMMSE estimator of xIs under the
hypothesis Is ⊂ I can be derived in the same way as the estimator
(4) was derived. The MSE of x̂Is |(Is ⊂ I) = B>s y is given by

MSE|(Is ⊂ I) =E
[∣∣∣∣∣∣xIs −B>s y

∣∣∣∣∣∣2
2
|Is ⊂ I

]
(5)

=σ2
x||Is −B>s AIs ||

2
F

+ σ2
x

∑
j /∈Is

||B>s aj ||22Pr(j ∈ I|Is ⊂ I)

where

Pr(j ∈ I|Is ⊂ I) =
(
n−s−1
K−s−1

)(
n−s
K−s

) =
K − s
n− s = ρs

2
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for j /∈ Is. Minimizing (5) with respect to Bs we find the LMMSE
estimator

x̂Is |(Is ⊂ I) = A>Is

(
(1− ρs)AIsA

>
Is + ρsAA>

)−1

y (6)

The estimator (6) can be simplified using matrix inverse identities
[17] to lower the cost of computing the estimate. We see that ρK =
0, so

x̂IK |(IK = I) = A†IKy

Thus for this scenario, the Bayesian estimator becomes the usual
least square estimator in the final iteration.

3.2. Noisy and correlated signals

When the components of xI |I are zero mean and correlated, covari-
ance matrices

C(u,v|Is) = E[uv>|Is ⊂ I]

=
∑

I,|I|=K

p(I|Is ⊂ I)E[uv>|supp(x) = I]

are non-diagonal in general. For the linear estimator x̂Is |(Is ⊂
I) = B>y, the MSE becomes

MSE|(Is ⊂ I) = E
[
||xIs −B>y||22|Is ⊂ I

]
(7)

= tr(C(xIs |Is)) + tr(B>C(y|Is)B)− 2tr(B>C(y,xIs |Is))

where C(y|Is) = AC(x|Is)A> + C(w) is the conditional co-
variance of y , C(y,xIs |Is) = AC(x,xIs |Is) and we used the
notation C(u|Is) = C(u,u|Is). Minimizing (7) with respect to B
we find the LMMSE estimator

x̂Is |(Is ⊂ I) = C(xIs ,y|Is)C(y|Is)−1y. (8)

Expressing the estimator as (8) makes the similarity with (2) appar-
ent.

Remark: Although we have chosen to concentrate on the un-
derdetermined setup (m < n), the results of this paper can also be
applied to sparse problems with an overdetermined setup (m ≥ n).

4. CONDITIONAL PRIOR BASED GREEDY
ALGORITHMS

Based on the structure of the OMP algorithm we develop the Con-
ditional Prior based OMP (CpOMP) algorithm by using the condi-
tional prior LMMSE estimator (4) in the detection step and (6) in the
estimation step. In the implementation we assume that x and w are
zero mean and uncorrelated, the non-zero components of x are iid
and that the noise is white. The CpOMP algorithm is summarized in
Algorithm 1.

Another modification of the OMP algorithm is the Projection-
Based OMP (POMP) described in [14]. POMP improves the perfor-
mance of OMP at the cost of higher complexity. In each iteration
POMP includes the L components with largest amplitude of A>r in
an intermediate support set, i.e.

J = Î ∪ {L largest components of |A>r|}

where the integer L is a user defined parameter. The vector xJ is
then estimated using least square minimization. In the final stage

Algorithm 1 CpOMP: Conditional Prior based OMP

Input: y ∈ Rm,A ∈ Rm×n,K, γ = SNR−1 = σ2
w/σ

2
x

Initialization:
1: r = y, Î = ∅, x̂ = 0,D =

(
AA> + γIm

)−1
.

Iteration:
1: repeat
2: ρ = (K − |Î| − 1)/(n− |Î| − 1)
3: i = argmaxj /∈Î

∣∣a>j Dr
∣∣ /(ρ+ (1− ρ)a>j Daj)

4: Î ← Î ∪ {i}
5: x̂Î = A>Î

(
(1− ρ)AÎA

>
Î + ρAA> + γIm

)−1
y

6: r = y −Ax̂
7: until |Î| = K or ||r||2 ≤ ε.

Output: Î, x̂

only the element of largest amplitude of J \Î is included in the
estimated support set Î, for more details see [14]. POMP can be
adapted to random sparse signals using the Conditional Prior based
framework, i.e. we replace the detection and estimation steps of
POMP by the steps 3. and 5. of the CpOMP algorithm with ρs =
max(0,K − s)/(n − s). We refer to the Conditional Prior based
version of POMP as CpPOMP.

5. COMPUTATIONAL COMPLEXITY

The naive implementation of CpOMP has a higher computa-
tional complexity, i.e. runtime, than the naive implementation of
OMP. Assuming that the algorithms terminates when |I| = K,
OMP requires the computation of O(nK) correlations requiring
O(nmK) operations and solving K least squares problems requir-
ing O(mK3) operations in total. So the complexity of OMP is
O(mK ·max(K2, n)).

CpOMP requires computing the matrix A>D requiringO(n2m)
operations, correlations requiringO(nmK) operations and comput-
ing K estimates x̂Î requiring O(Km3) operations in total. The
complexity of CpOMP is thus O(m ·max(n2,Km2)).

We should mention that faster implementations of OMP and
other pursuit algorithms exists, see e.g. [19] and references therein.

6. NUMERICAL EVALUATION

To compare the algorithms we numerically evaluated their perfor-
mance using Monte-Carlo simulations. The simulation was per-
formed as follows.

1. Generate a m× n matrix A by drawing its components from
N(0, 1) and normalize the column vectors.

2. Draw a subset I ⊂ {1, 2, . . . , n} withK elements uniformly
at random.

3. Generate the signal vector x ∈ Rn by setting xIc = 0 and
draw xI from N(0, σ2

xIK). Draw w from N(0, σ2
wIm).

4. Calculate the measurement y = Ax+w.
From y we then estimate x using OMP, POMP, Subspace Pursuit

(SP) [11], Gaussian based Matching Pursuit (GMP) [13] CpOMP
and CpPOMP. We compared the performance by empirically evalu-
ating two performance measures: the Normalized Mean Square Er-
ror (NMSE)

NMSE =
E[||x̂− x||22]
E[||x||22]

3
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Fig. 1. NMSE [dB] for SNR = 20 dB.

and the Average Support Cardinality Error (ASCE)

ASCE = 1− E[|Î ∩ I|]
|I| .

Each of the performance measures show different aspects of the
sparse estimation problem. Which measure to be preferred should
ultimately depend on the scenario or application where the methods
are applied. In the simulations we kept the Signal-to-Noise-Ratio
(SNR)

SNR =
E[||Ax||22]
E[||w||22]

=
Kσ2

x

mσ2
w

fixed. We generated T = 50 random 30 × 100 matrices. For each
matrix and each value of K we estimated N = 500 random signals
from measurements. For varying SNR and α = m/n we fixed the
sparsity to K = 11.

Figure 1 and 2 shows the NMSE and ASCE for different K and
SNR = 20 dB. We observe that CpOMP and CpPOMP improves
the NMSE by 2.5 dB for K ≥ 6 and the ASCE by 5% for K ≥ 10
compared to their non-Bayesian counterparts OMP and POMP. In
total CpPOMP achieved an improvement of 4 dB in NMSE and 8 %
in ASCE compared to the standard OMP.

The performance for noise free measurements is shown in figure
3 and 4. CpOMP and CpPOMP improves the NMSE with more than
3.2 dB and the ASCE by more than 3% for K ≤ 10 over OMP and
POMP. The total improvement of CpPOMP over OMP was 4.6 dB
in NMSE for and 9% in ASCE for K ≥ 10.

Figure 5 and 6 shows the NMSE for varying SNR and α = m
n

for K = 11. We observe that the performance gain of CpOMP and
CpPOMP over OMP and POMP increases with SNR. The NMSE
is lower by 3 dB for high SNR. In figure 6 we see that CpOMP
and CpPOMP have lower NMSE than OMP and POMP for α ≤
0.4, i.e. the proposed bayesian methods only perform better than
the deterministic methods when the fraction of measurements is less
than 40%.

7. CONCLUSION

In this paper we derived a LMMSE estimator of random sparse vec-
tors by minimizing the MSE with respect to a conditional prior dis-
tribution. We used the LMMSE estimator to modify the OMP and

Fig. 2. ASCE for SNR = 20 dB.

Fig. 3. NMSE [dB] for noise-free measurements.

POMP algorithms. Through numerical simulations it was shown that
the modified algorithms improved the empirical performance of the
algorithms.
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