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ABSTRACT 
 

Detection and localization of stationary targets behind walls 

is primarily challenged by the presence of the overwhelming 

EM signature of the front wall in the radar returns. In this 

paper, we address suppression of front wall clutter prior to 

image reconstruction for a stepped-frequency radar imaging 

system, when different sets of few frequency observations 

are available at different antennas in physical or synthetic 

aperture arrays. We use a dictionary based on discrete 

prolate spheroidal sequences to represent the wall return and 

employ a block sparse model to capture and subsequently 

remove the wall clutter at each available antenna. The 

proposed scheme enables sparsity-based image 

reconstruction techniques to effectively detect and localize 

behind-the-wall targets from reduced data measurements. 

 

Index Terms— Through-the-Wall Radar Imaging, 

DPSS, Compressive Sensing, Wall Mitigation, Sparse 

Reconstruction. 

 

1. INTRODUCTION 

 

Detection and localization of stationary targets inside 

enclosed structures using radar are challenged, amongst 

other factors, by the presence of clutter caused by the EM 

scattering from the exterior front wall [1], [2]. Front wall 

return is typically stronger than that from targets of interest, 

such as humans.  Further, wall reverberations introduce 

ringing in the radar range profiles, thereby obscuring the 

weak indoor target returns. Therefore, wall reflections need 

to be suppressed, prior to image formation. 

A simple and effective method for wall clutter 

mitigation is background subtraction. However, access to 

empty scene measurements is not available in many 

applications. For conventional imaging using full data 

volume, three main approaches have been proposed for 

suppression of wall reflections without relying on the 

background scene data [3]-[7]. In the first approach, the 

front wall parameters, such as thickness and dielectric 

constant, are estimated from the first wave arrivals [3]. The 

estimated parameters can be used to model EM wall returns, 

which are subsequently subtracted from the total radar 

returns, rendering wall-free signals. Although this scheme is 

effective, it requires a calibration step, which involves 

measuring the radar return from a metal plate at the same 

standoff distance as the front wall under similar, if not 

identical, operating conditions [8]. The second approach 

applies a spatial filtering method for wall clutter mitigation, 

which relies on the invariance of wall returns with changing 

antenna location [4], [5]. The third approach recognizes the 

wall reflections as the strongest component of radar returns, 

in addition to its spatial invariance property. By applying 

singular value decomposition (SVD) to the measured data 

matrix, the wall returns are captured by the singular vectors 

associated with the dominant singular values and removed 

by orthogonal subspace projection [6], [7].  

Recently, it has been shown that compressive sensing 

(CS) techniques can be applied, in lieu of backprojection, to 

reveal the target positions behind walls [9]-[11]. In so doing, 

significant savings in data acquisition time can be achieved. 

Further, producing an image of the indoor scene using few 

observations can be logistically important, as some of the 

data measurements in space and frequency can be difficult 

to attain. Both SVD- and spatial filtering-based wall 

mitigations in conjunction with CS were considered in [12]. 

Direct application of these methods to the reduced data 

volume was shown to provide satisfactory performance 

when the same subset of frequencies was used for each 

antenna in physical or synthetic aperture arrays. For the case 

where the frequencies were allowed to differ from one 

antenna to another, individual range profiles were first 

reconstructed using 	norm minimization employing a 

Fourier basis. Then, the data of the missing frequencies 

were obtained by taking the Fourier Transform of the 

reconstructed range profile at each antenna. Once the radar 

returns corresponding to all original frequencies were 

estimated, any conventional wall mitigation method could 

be applied. However, since the presence of the wall clutter 

renders each range profile quite dense, wall clutter 

mitigation was accomplished at the expense of target-to-

clutter ratio compared to the case where the same set of 

reduced frequencies was employed at each available antenna 

location.  
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In this paper, we propose an alternate scheme to 

overcome the shortcomings of the wall clutter mitigation 

scheme proposed in [12] when different sets of reduced 

frequencies are used at the available antennas.  We employ a 

dictionary based on discrete prolate spheroidal sequences 

(DPSS’s) to represent the wall return and use a block sparse 

approach to capture and subsequently remove the wall 

clutter at each available antenna individually under reduced 

data volume. This permits the application of CS techniques 

for image reconstruction. Note that this scheme is also 

applicable to the case where the same set of reduced 

frequencies is used at each available antenna.  

The paper is organized as follows. Section 2 briefly 

reviews DPSS’s. Through-the-wall signal model is 

described in Section 3. The DPSS based wall clutter 

suppression scheme is presented in Section 4. CS based 

image reconstruction using the wall-suppressed data is 

described in Section 5. Supporting experimental results are 

presented in Section 6. Section 7 provides the conclusion. 

 

2. DISCRETE PROLATE SPHEROIDAL 

SEQUENCES 

 

DPSS’s are a collection of index-limited sequences that 

maximize the energy concentration within a given frequency 

band [13], [14]. The DPSS’s constitute a basis for finite-

energy signals that are time-limited with their energy 

concentrated in a given bandwidth. In this paper, since we 

consider a stepped-frequency signal consisting of K 

frequencies, we deal with the dual problem to the 

conventional DPSS’s. That is, we seek frequency domain 

sequences, s[k], confined to the frequency index set 

[0,1,…,K-1], whose energy is concentrated in a finite 

normalized time interval [-, ), where 0 < T < 1/2. The K-

length frequency domain DPSS’s are defined as solutions of 

[14] 

 

   = λ,													 = 0,1,⋯ ,  − 1                  (1) 

 

where  is a  × 1 vector with elements ,  =
0,1,⋯ ,  − 1, and λ  are the eigenvalues of the matrix , 

which is given by  

 , = 	((
( .                                (2) 

 

The DPSS’s are orthonormal on the set {0,1,⋯ ,  − 1}.  
 

3. THROUGH-THE-WALL SIGNAL MODEL 

 
Consider an M-element linear synthetic aperture radar 

located parallel to a homogeneous wall at a nonzero standoff 

distance. The radar employs a wideband stepped-frequency 

signal, consisting of K uniformly spaced frequencies 

}. Assuming monostatic operation, the wall return at 

the mth antenna location  corresponding to the kth frequency 

is given by [1] 

   ( = ∑  exp(−2(
                 (3) 

 

where  is the complex wall reflectivity, L  is the number 

of wall reverberations, ( is the propagation delay 

associated with the direct wall return, (,  > 0  are the 

delays associated with the wall reverberations, and  is the 

path loss associated with the lth wall return.  

The return at the mth antenna corresponding to the kth 

frequency from P point targets behind the wall can be 

expressed as [1], [15] 

 

   ( =  exp(−2,
           (4) 

 

where   is the complex reflectivity of the pth target, and 

, is the two-way traveling time between the pth target 

and the mth antenna. Thus, the total baseband signal 

received by the mth antenna corresponding to the kth 

frequency is the superposition of the wall and target returns, 

 

 ( = ( +  (        (5) 

 

The signal received by the mth antenna at the K 

frequencies can be arranged into a K × 1 vector  as 

 

 = ( ( ⋯ ( =  +      (6) 

 

with  	,   representing the wall and target contribution 

vectors at the mth antenna, respectively. 

 

4. DPSS-BASED WALL CLUTTER MITIGATION 

UNDER REDUCED DATA VOLUME 

 

The Fourier transform of each of the K × 1 received 

stepped-frequency signals {}
   is an ensemble of 

returns, each of duration 


10
, concentrated on a number 

of time intervals within − 
∆ , 	


∆ ,  =


 . We 

refer to such signals as “multi-duration signals”. We first 

construct a basis using DPSS’s for efficiently capturing the 

structure of such signals. 

 

4.1. DPSS Basis 

 

We divide the unambiguous time − 
∆ , 	


∆  into 

 =  
∆ − 1 overlapping intervals of length  = 

10
. 

Note that the choice of non-overlapping set of intervals 

would be inadequate since the radar returns from the various 

targets may not lie exactly on the grid. The nth time interval 

has an extent  = − 
∆ +


 − 

 , 	 −


∆ +

 + 

 ,	 =
1,2,⋯ , . Let  = 

  and  = − 
∆ +


  . Consider 

the  ×  matrix ,		of K-length frequency domain 

DPSS’s 
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 , =   …                                  (7) 

 

with }  defined in (1). Forming the  ×  diagonal 

matrix 	as 

  = 
1 0 … 0
0  … 0
⋮ ⋮ ⋱ ⋮
0 0 … (

,            (8) 

 

we can define the time-shifted DPSS basis for  as 

,. It can be readily shown that , forms an 

orthonormal basis for the signals supported on  in ℂ . 

Further, the first 2 + 1	time-shifted DPSS’s suffice	as 

the signal basis [16]. Therefore, we consider the  ×
(2 + 1	 matrix , comprising the first 2 +
1	columns of , ,,,,	as an efficient basis for signals 

supported on . Thus, the  × (2 + 1	 DPSS basis 

 for the multi-duration signals can be defined as the 

concatenation of the N time-shifted DPSS bases [16],   

 

  =   … .                  (9) 

 

Using the DPSS basis , the received signal at the mth 

antenna can be expressed as 

 

   =  +  =  + ,		 = 0,1, … , − 1  (10) 

 

where   and   are the (2 + 1-length coefficient 

vectors corresponding to the wall and target returns, 

respectively. It is noted that because of the multi-duration 

nature of the radar returns, the wall and target contributions 

	 ,    can be represented using only the columns of  

corresponding to the occupied time intervals. As a result, 

both   and    exhibit a block-sparse structure, i.e. the 

nonzero coefficients cluster in a small number of blocks. 

 

4.2. Wall Clutter Mitigation under Reduced Data 

Volume 

 

The data model in (10) involves the full set of measurements 

made at all 	antenna locations using the K frequencies. 

Assume only (< 	randomly selected antenna locations 

are available for data collection. Let  ∈ 0,1, … , − 1,  
for  = 0,1, … , − 1,  be the indices of the employed 

antenna locations. Consider  , which is a vector of length 

 ≪ ,	consisting of elements chosen from   as follows. 

 = ( = ( + ( =  +   

           = 	( + (                    (11) 

where ( is a  ×  measurement matrix constructed by 

randomly selecting  rows of a  ×  identity matrix. The 

matrix ( determines the reduced set of frequencies 

corresponding to the th		antenna location.   

 

The goal is to reconstruct the wall contribution at each 

employed antenna location individually using the reduced 

measurement vector  , which can then be subtracted from 

  to obtain the clutter-free radar return at the th antenna. 

Because of the block sparse nature of  	and	 , we use 

the block extension of orthogonal matching pursuit (BOMP) 

to recover the wall component [17]. As previously stated, 

the wall return is stronger than the target returns and 

dominates the energy in the data. Also, in practice, due to 

the strong attenuation in wall materials, only one to two wall 

reverberation responses are typically observed [18]. 

Therefore, the first two to three BOMP iterations will 

capture the wall contribution [19]. This implies that the 

output of the BOMP algorithm  ≈  .  Thus, the target 

contribution can be obtained by simply subtracting the 

reconstructed wall contribution,  

                       −  ≈                                             (12) 

Once the wall clutter has been suppressed individually at 

each employed antenna location, we can proceed with image 

formation under reduced data volume. 

 

5. CS BASED IMAGE FORMATION 
 

Assume that the scene being imaged is divided into  ×  

pixels in crossrange and downrange. Vectorizing the image 

into an  × 1 scene reflectivity vector  and using the 

wall-free signal model in (4), we obtain the linear system of 

equations, 

        = .                                                   (13) 

The rth element of the th column of the  ×  matrix 

  is given by 

  	, = exp −2, ,  = 0,1, … ,  − 1,		 
																																																			 = 0,1, … ,  − 1          (14) 

where , is the two-way traveling time between the qth 

pixel and the th antenna.  The vector σ in (13) is a 

weighted indicator vector defining the scene reflectivity, 

i.e., if there is a target at the qth pixel, then the value of the 

qth element of σ equals the target reflectivity. Otherwise, it 

is zero. Stacking the wall-free signal samples from all 

	antenna elements, we obtain the  × 1  measurement 

vector  as 

                     =                                                        (15) 

where  = 
 

 ⋯ (
 .  Given the reduced 

measurement vector  in (15), we can recover σ by solving 

the following	 norm minimization problem, 

 

    = argmin

‖‖, subject	to	 ≈            (16) 
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The problem in (16) can be solved using convex relaxation, 

greedy pursuit, or combinatorial algorithms. In this work, 

we use OMP for the CS based reconstruction [20]. 

 

6. EXPERIMENTAL RESULTS 

 

In this section, we present results of the DPSS based scheme 

and provide performance comparison with the wall-

mitigation based CS approach proposed in [12] for the case 

of having different sets of reduced frequency measurements 

at different available antenna locations. 

A stepped-frequency synthetic aperture radar system was 

used to perform real through-the-wall measurements in the 

Radar Imaging Lab at Villanova University. The synthetic 

linear aperture consisted of 67 uniformly spaced elements, 

with an inter-element spacing of 0.0187 m. The aperture 

was located parallel to a 0.14 m thick solid concrete wall at 

a standoff distance of 1.24 m. The stepped-frequency signal 

comprised 728 frequencies from 1 to 3 GHz, with a step size 

of 2.75MHz. A vertical metal dihedral, located at (0, 4.4) m, 

was used as the target. Each face of the dihedral was 0.39 m 

×	0.28 m. The back and the side walls were covered with 

RF absorbing material. Measurements from the empty scene 

without the target were also made. 

The scene to be imaged is chosen to be 4 m × 6 m 

centered at (0, 3) m and divided into 41×36 pixels.  Figure 

1(a) shows the 	 norm reconstructed image corresponding 

to the measured scene using the full raw dataset. OMP was 

used for image formation. The number of OMP iterations, 

usually associated with the scene sparsity, was set to 100 in 

this case. In this and all subsequent images, we plot the 

image intensity on a 35 dB scale, with the maximum 

intensity value in each image normalized to 0 dB. We notice 

the strong antenna ringing present in the data, showing up in 

the image at downranges prior to the front wall. Since the 

target return is much weaker than the antenna ringing and 

the wall return, only the antenna ringing and wall have been 

reconstructed and the algorithm fails to detect the target. 

With the availability of empty scene measurements, we can 

perform background subtraction to remove antenna ringing 

and wall clutter. The target is clearly visible in the 

corresponding 	 norm reconstructed image using full data 

volume, shown in Fig. 1(b). The number of OMP iterations 

was chosen to be 5 in this case. Note that there is a slight 

bias in the imaged target location. This is because we do not 

correct for the additional propagation delay encountered by 

the signal as it travels through the wall.   

Next, we randomly selected 20% of antenna locations 

and randomly chose 20% of frequencies at each selected 

antenna location. Figure 2(a) shows the 	 norm 

reconstructed image with 5 OMP iterations after the 

proposed DPSS based wall clutter mitigation. In order to 

effectively capture the antenna ringing and the front wall 

contributions, the number of BOMP iterations was set to 11. 

Clearly, the DPSS based scheme successfully removed both 

the antenna ringing and the wall, thereby allowing the 

subsequent 	 norm image reconstruction to locate the 

target. For the wall clutter mitigation scheme of [12], we 

first recovered all the frequency measurements at each 

employed antenna location through  norm range profile 

reconstruction using the Fourier basis.  The number of OMP 

iterations for the individual range profile reconstructions 

was set to 120. Figure 2(b) shows the reconstructed image 

after applying subspace projection based wall mitigation 

scheme to the full frequency data recovered from the 

reconstructed range profiles. We observe that the target is 

barely localized and there are substantial antenna ringing 

and wall clutter residuals visible in the image. 

 

7. CONCLUSION 

 

We presented a DPSS based wall clutter rejection scheme 

for imaging of stationary targets behind walls using reduced 

data volume. First, the DPSS basis was used to effectively 

capture the energy of the wall return at each employed 

antenna. The reconstructed wall return was subtracted from 

the measured data at each individual antenna to obtain the 

wall-free measurements. This enabled the application of CS 

techniques for scene reconstruction with fewer observations. 

Supporting results based on real data experiments 

demonstrated the performance of the proposed scheme for 

the case when the reduced sets of frequency measurements 

were allowed to vary from one antenna to the other.  
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Figure 1.  norm reconstructed images with full data volume, (a) no preprocessing, (b) after background subtraction. 

 

                  
     (a)                                                                                                 (b) 

Figure 2.  norm reconstructed images after wall clutter mitigation, (a) proposed DPSS based approach, (b) wall clutter mitigation 

proposed in [11]. Target position is indicated by the white circle in each image. 
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