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ABSTRACT

In this paper, we present a localised Capon spectral estima-
tor that exhibits improved ability of resolving closely spaced
peaks in the frequency domain. Starting with a unitary trans-
formation using the discrete Fourier transform results in sig-
nals of interest being localised to small regions of the spec-
trum. Therefore, the algorithm uses this fact to construct a
covariance matrix with low dimensionality, which can be eas-
ily inverted. This reduces the number of samples required
to be averaged to produce the covariance matrix and as a re-
sult allows the spectrum resolution to be improved. In the
simulation results, by comparing with the original Capon, the
effectiveness of the novel estimator in resolving close peaks
is demonstrated using both simulated undamped exponentials
and simulated NMR spectroscopy signal (that is damped ex-
ponentials).

Index Terms— Capon spectral estimator, spectral estima-
tion, spectrum resolution, NMR Spectroscopy.

1. INTRODUCTION

Spectral estimation is a fundamental research problem that is
relevant to a wide range of engineering applications such as
radar imaging, biomedical signal processing and speech pro-
cessing (see [1] and the reference within). For instance, the
signal in nuclear magnetic resonance (NMR) spectroscopy [2]
[3] is modelled as a sum of an unknown number of decaying
complex exponentials in additive noise [4]. The spectrum of
the NMR data contains many closely spaced components that
must be resolved. This necessitates a practical high resolution
spectral estimator to detect and separate overlapping peaks.

When dealing with spectral estimation on signals with un-
known number of components, such as NMR signals, popular
high resolution parametric estimators [5] [6] are not desirable
as they require the component number as a priori information.
In the other hand, the Capon spectral estimator [7] and the am-
plitude and phase estimator (APES) [8], along with their effi-
cient implementations [1] [9] are worth-considering methods
as they are non-parametric spectral estimators that do not need
the a priori information of the number of signal components.
Their general philosophy relies on the design of adaptive FIR

filter-banks with each filter tuned to one of the frequency bins
by solving certain constrained minimisations. The solution,
however, involves the inversion of the covariance matrix of
the signal. This covariance matrix must be estimated, which
places hard requirements on the number of samples, and the
inversion causes financial difficulties. Therefore, the achiev-
able resolution of the estimated spectrum is limited by these
two problems [8].

In this paper, we present a spectral estimator that has
higher resolution than Capon and APES. To achieve this goal,
we propose a localised version of the Capon estimator that
reduces the dimensionality of the covariance matrix. This not
only relieves the training data requirement, but also allows
for a potentially lower computational complexity which can
be traded for improved resolution.

The structure of the paper is as follows. In the follow-
ing section, we review the original Capon spectral estimator.
In Section 3, we put forward the novel localised Capon es-
timator. In Section 4, we show the simulation results of the
localised algorithm, including the comparison with the origi-
nal version on undamped exponentials and the application to
simulated NMR signal. Finally the conclusions are drawn in
Section 5.

2. CAPON SPECTRAL ESTIMATOR

Consider a signal modelled by:

x(n) =

I∑
i=1

a( fi)e j2π fin + w(n), n = 0 . . .N − 1 (1)

where I is the number of components (usually unknown in
practice). a( fi) is the complex spectrum amplitude corre-
sponding to frequency fi, which Capon estimator tempts to
estimate. w(n) is assumed to be additive Gaussian noise with
zero mean and variance σ2.

In the original Capon spectral estimator, the signal sam-
ples are firstly partitioned to a M × L Hankel matrix X =

[x1, x2, . . . , xL], where xl = [x(l), x(l + 1), . . . , x(l + M − 1)]T

and L = N − M + 1 (note that M < L). Here (•)T denotes
the matrix transpose. The output signal filtered by an M-
tap FIR filter h( f ) ∈ CM×1 at time l is therefore given by
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y(l) = hH( f )xl, where (•)H denotes the conjugate transpose.
The goal of the Capon estimator (filter) design is to minimise
the power of the output signal y, for a frequency of interest
f , subject to the output of a single exponential signal at that
frequency being constrained to 1. This is expressed as:

min
h

L∑
l=1

∣∣∣hH( f )xl

∣∣∣2 s.t. hH( f )sM( f ) = 1 (2)

where sM( f ) ∈ CM×1 is the Fourier template vector (single
exponential signal) of length M:

sM( f ) = [1, e j2π f , . . . , e j2π(M−1) f ]T . (3)

The solution of this problem results in a filter-bank whose
weights corresponding to f are:

h( f ) =
R−1sM( f )

sH
M( f )R−1sM( f )

(4)

where R is the signal covariance matrix. We use the forward-
backward averaged covariance matrix throughout the paper:

R =
1

2L

(
XXH + X̃X̃H

)
(5)

where X̃ is the partition matrix of the complex conjugate re-
versed signal x̃(n) = x∗(N−1−n) and (•)∗ denotes the complex
conjugate. We would like to mention here one may consider
to use the forward-only covariance matrix to achieve higher
resolution of the estimator (see [10]), however, we find that
this is only true when M is relatively small. As M approaches
L, the resolution of the forward-backward Capon becomes
higher than the forward-only Capon. The amplitude spectrum
estimation at frequency f is therefore |â( f )|, where

â( f ) =
1
L

hH( f )Xs∗L( f ) =
sH

M( f )R−1Xs∗L( f )

LsH
M( f )R−1sM( f )

. (6)

3. LOCALISED CAPON SPECTRAL ESTIMATOR

It is known that choosing a larger filter length M will result
in higher resolution of the spectrum estimation in (6) whereas
the amount of averaging, L, controls the smoothness. In order
to obtain a non-singular (invertible) covariance matrix R, the
number of samples being averaged must be strictly larger than
the number of degrees of freedom, that is M < L. Therefore,
for any fixed N, the Capon algorithm appears to have a limit
on the achievable resolution of the spectrum estimation. We
now present the localised Capon estimator that allows us to
relax the averaging requirement and improve the resolution.

Let F ∈ CM×M be the unitary Fourier matrix having
1
√

M
sM( f ) as one of its columns, Eq. (6) can be re-written as

â( f ) =
sH

M( f )FFHR−1FFHXs∗L( f )

LsH
M( f )FFHR−1FFHsM( f )

=
[FHsM( f )]H(FHRF)−1[FHXs∗L( f )]
L[FHsM( f )]H(FHRF)−1[FHsM( f )]

. (7)

Now it is clear that FHsM( f ) = [0, . . . , 0, 1, 0, . . . , 0]T with
all of the energy of sM( f ) concentrated in the element cor-
responding to the column index of 1

√
M

sM( f ). Therefore, we
propose reducing the dimensionality of the problem to r � M
by localising the Fourier matrix F to a matrix F̄ consisting of
only a few column vectors around sM( f ). In the following,
the overbar refers to the dimension reduced quantities. Then
F̄HsM( f ) becomes a length-r vector that has 1 for the entry
corresponding to f and zero elsewhere. Let r = 2p + 1, then
the reduced dimension vector s̄r becomes

s̄r( f ) = F̄HsM( f ) = [0, . . . , 0︸  ︷︷  ︸
p

, 1, 0, . . . , 0︸  ︷︷  ︸
p

]T . (8)

Clearly the localised algorithm reverts to the original if we
put r = M.

When the DFT is oversampled by zero-padding the signal
x(n) prior to the FFT algorithm, F becomes not a unitary ma-
trix and (8) no longer holds. Nevertheless, we can still make
the assumption that most of the energy of FHsM( f ) is con-
centrated in a small number of points in the neighbourhood
of the frequency of interest f . Let the zero padding be to a
length NF = mM for m > 0. Then for F ∈ CNF×NF we can still
perform the localisation s̄r( f ) = F̄HsM( f ) with F̄ having the
center column on f and another 2p columns spaced by bmc
bins, where b•c is the floor operation.

Now the localised Fourier-transformed signal matrix is
X̄ = F̄HX (similarly ¯̃X = F̄HX̃ for reversed signal matrix) and
the localised Fourier-transformed covariance matrix becomes

R̄ = F̄HRF̄ =
1

2L

(
X̄X̄H + ¯̃X ¯̃X

H
)
. (9)

The localised Capon spectral estimator is then given by:

¯̂a( f ) =
s̄H

r ( f )R̄−1X̄s∗L( f )

Ls̄H
r ( f )R̄−1s̄r( f )

. (10)

To calculate (10) for each frequency bin, operations on
small size matrices related to r are performed, which signif-
icantly reduces the dimensionality of the original algorithm.
Also, instead of the original M × M covariance matrix, we
now require Lr > r vectors to be averaged for the localised
covariance matrix R̄ ∈ Cr×r to be invertible. This relaxation
of the required amount of smoothing allows us to reduce L
below the initial limit of M. The consequence of this is that
M can be increased (recall that L + M − 1 = N), which leads
to an improved spectral resolution with respect to the origi-
nal algorithm. For a good balance between smoothness of the
spectrum and resolution, we found that a smoothing length
satisfying N

4 < Lr ≤
N
2 works well.

Finally, we summarise the localised Capon spectrum esti-
mation algorithm as:

1. Given a signal vector x ∈ C1×N , use partitioning strat-
egy to generate M × Lr Hankel signal matrices X and
X̃, where N

4 < Lr ≤
N
2 and M = N − Lr + 1;

2



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

2. Initialise the localised region r (typically r = 5, 7, 9),
the frequency grid f ∈ C1×NF and the Fourier templates
sM(f) ∈ CM×NF ;

3. According to the frequency grid f, calculate FHX, FHX̃
and FHsM(f) using NF-FFT;

4. For each bin f in the frequency grid, do:

(a) Center a sliding window of length r , which has
all of its points spaced by

⌊
NF
M

⌋
bins, on the corre-

sponding column of f in FHX and FHX̃ to obtain
X̄ ∈ Cr×L and ¯̃X ∈ Cr×L;

(b) Use the same sliding window and obtain s̄r( f ) ∈
Cr×1 from FHsM(f)

(c) Calculate R̄ ∈ Cr×r using (9) and find R̄−1;

(d) Obtain the spectrum estimation ¯̂a( f ) using (10).

Although a full analysis of the computational cost of the
localised algorithm is beyond the scope of this paper, it is
worth including some comments on it before concluding this
section. The localised algorithm requires the inversion of a
much smaller matrix than the original Capon (r � M). This
significantly reduces the computational cost per frequency bin
and it remains much smaller than the original Capon for a
reasonable number of bins. However, in the case that the
spectrum is required to be calculated on the whole spectrum
with a dense grid, direct implementation of the localised ver-
sion can become burdensome with respect to efficient imple-
mentations of the original Capon [1, 9]. Note, however, that
analysing the entire spectral bandwidth is not necessary in
NMR spectroscopy as the signals of interest usually occupy
several small frequency regions. Nevertheless, efficient im-
plementations of the localised version are being investigated.

4. SIMULATION RESULTS

In this section, we first simulate the proposed localised Capon
spectral estimator on simulated undamped signal and com-
pare the performance with the original Capon and other well
known estimation algorithms including APES and the MU-
SIC estimator [6] (which needs the number of components in
advance). Then we apply the proposed estimator to a simu-
lated NMR signal to further demonstrate the performance.

We first compare the ability of the various estimators to re-
solve two closely spaced peaks by performing the algorithms
on a sum of two undamped complex exponentials:

x(n) = e j2π f1n + e jθe j2π f2n + w(n), n = 0 . . .N − 1 (11)

where N = 64. θ is the phase difference between the two com-
ponents and f1, f2 ∈ [0, 1] are normalised frequencies. The
noise terms w(n) are zero-mean Gaussian noise with variance
σ2. The signal to noise ratio (SNR) is defined by 1/σ2. In
this simulation, we set θ = 0, SNR = 25dB, f1 = 0.5 and

vary f2 from 0.495 to 0.499. We consider two closely spaced
sinusoidal signals as resolved if the following rule is satisfied
[10]:

δ = 2â( fm) − â( f1) − â( f2) < 0 (12)

where â( f ) is the spectrum estimation at frequency f and fm =

0.5( f1 + f2), which is the intermediate frequency between f1
and f2. For the localised Capon, we use a localised region
r = 5. For the original Capon, we consider to obtain the
highest achievable resolution by putting M = 0.5N = 32,
giving L = M + 1 = 33. For both MUSIC and APES, we
use the same covariance matrix as the original Capon. Fig.
1 shows the rate of successfully resolving both peaks as a
function of f2. We find that when Lr = 20, the localised
algorithm has a much stronger ability to separate two peaks
than original Capon and APES, and is also slightly better than
the MUSIC estimator. As Lr → L, the performance of the
localised algorithm is comparable to Capon and APES.

Then we examine the accuracy of frequency estimation
of different methods. In this simulation, we use the previous
signal model (11) by setting f1 = 0.5 and f2 = 0.48. θ is ran-
domly chosen in each run. We obtain the frequency estimates
of the Capon algorithms by peak picking in the estimated am-
plitude spectra. As it has already been shown in [10] that
the Capon estimator significantly outperforms APES for fre-
quency estimation, the result of APES is not shown in this
simulation. The parameters of localised Capon, Capon and
MUSIC are the same as the previous test. Fig. 2 shows the
root mean square error (RMSE) of the estimates of f1 versus
SNR. For comparison, we also show the Cramer-Rao lower
bound (CRLB) of multiple exponentials case. It can be clearly
found that for all the estimators, the RMSEs follow the trend
of the CRLB. The MUSIC estimator has similar performance
to the original Capon. We know that smaller Lr leads to a
less smoothed spectrum estimation. Therefore, the RMSE of
localised Capon when Lr = 20 is marginally larger, and it
becomes more comparable to the other two estimator as Lr

approaches L. This also illustrates the trade-off that exists be-
tween the resolution and the RMSE.

Next, we examine the ability for resolving three closely
spaced peaks by applying all the algorithms to the signal:

x(n) =

3∑
i=1

e j2π fin + w(n), n = 0 . . . 63 (13)

where f1 = 0.5 and f2 = 0.495, which are previously shown
to be resolvable in the two components case for all the esti-
mators. We set SNR = 25dB and f3 varies from 0.45 to 0.49.
As f3 becomes closer to f2, we say all the three components
are successfully resolved if f1 and f2 are resolved and at the
same time f3 and f2 are also resolved. The parameters of all
the algorithms are set to the same values as the previous tests.
Fig. 3 shows the rate of resolving all the components as a
function of the varying f3. We find the figure exhibit similar

3



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

results as the two components case that localised Capon when
Lr = 20 is the most capable estimator to resolve all the peaks.

To conclude the above three simulations, the localised
Capon outperforms the original version in both resolution
and accuracy of frequency estimation, and at the same time
outperforms the original Capon for resolution by sacrificing
slight loss on accuracy. In small Lr case, the localised Capon
has higher resolution than MUSIC but has higher RMSE as
well. Nevertheless, we would like to emphases that the ad-
vantages of the localised Capon are still obvious: MUSIC
requires the signal components as a priori knowledge, which
is not needed in localised Capon; Also, as the number of
signal samples becomes large (i.e. N ≥ 210, which is the
common case in NMR signal), MUSIC becomes undesirable
due to the heavy computational cost of the eigenvalue de-
composition of a huge covariance matrix, while the localised
Capon is still implementable as localised covariance matrices
are to be inverted. And clearly, these advantages can also
applied to other parametric estimators such as ESPRIT [5].
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Fig. 1. Ability of resolving two closely spaced peaks of vari-
ous algorithms. 1,000 Monte Carlo runs were used.
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Fig. 2. RMSE of frequency estimation obtained by various
algorithms. 5,000 Monte Carlo runs were used.

Finally, we demonstrate the performance of the Capon
and localised Capon estimators to the processing of simulated
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Fig. 3. Ability of resolving three closely spaced peaks of var-
ious algorithms. 1,000 Monte Carlo runs were used.

Table 1. Parameters of the simulated NMR signal
Component Amplitude Frequency Damping

Number Factor
1 5 0.2 5 × 10−3

2 0.1 0.498 1 × 10−4

3 1 0.5 5 × 10−4

4 1 0.5005 5 × 10−4

5 0.1 0.5025 1 × 10−4

6 0.2 0.698 2.5 × 10−3

7 0.5 0.7 1 × 10−4

NMR signal. The signal consists of a sum of seven damped
complex exponentials:

x(n) =

7∑
i=1

e jφAie(−ηi+ j2π fi)n + w(n), n = 0 . . .N − 1 (14)

where N = 1024. Ai, ηi > 0 and fi are the complex amplitude,
the damping factor and the frequency of the ith component re-
spectively. φ denotes the initial phase, which we set to be
zero. The noise variance is set to σ2 = 0.01 and the signal pa-
rameters are listed in Table 1. The signal components are cho-
sen so that components 3 and 4 are very close to each other,
with two satellites located either side of them. Component 6
and 7 are closely spaced as well with one of them being more
damped than another. In this simulation, we mainly focus the
ability of resolving peaks on the spectrum.

To show the superiority of peak resolving of the Capon al-
gorithms, we “zoom in” the spectrum by showing the Capon
and localised Capon spectrum estimation on the frequency
bins around f = 0.5 and f = 0.7. The smoothing length
of the original Capon used here is L = N/2 + 1 = 513 and
that of the localised Capon is Lr = bN

3 c = 341. The size of the
localised region is set to r = 9. For both algorithms, the fre-
quency bins calculated are spaced by 1/NF , where NF = 217.
For comparison, we also plot the absolute value of the real
part of NF-point DFT (as it has stronger peak-resolving ability
than the absolute-valued DFT). In Figs. 4 and 5 we demon-
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strate the “zoomed in” spectra by plotting all the algorithms
on top of each other and normalising the amplitude. It can be
clearly found in Fig. 4 that the closely spaced peaks which
are not separated in the DFT can now be clearly observed us-
ing Capon estimators where the energy of the components are
more concentrated near the true frequencies. Furthermore,
note how the localised Capon shows a much improved res-
olution, especially for the two large peaks. In Fig. 5 we see
that the Capon estimators reduce the sidelobes due to the large
component and show component 6 more clearly than the DFT.
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Fig. 4. The performance of the estimators near f = 0.5 of the
simulated NMR spectrum.
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Fig. 5. The performance of the estimators near f = 0.7 of the
simulated NMR spectrum.

5. CONCLUSIONS

We have presented in this paper a localised version of the
Capon spectral estimator for resolving closely spaced peaks
in the frequency domain. Instead of finding the inverse of the
whole signal covariance matrix, the novel method localises
the covariance matrix into a small area of the spectrum cen-
tered on the signal of interest. Consequently, a larger amount
of the available data can be used to improve the spectrum res-

olution. Simulation results show the localised algorithm have
stronger capability to resolve close peaks but slightly higher
variance than original Capon estimator and its superiority on
component detection is further confirmed by experimenting
on simulated NMR signal.
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