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ABSTRACT

Most state-of-the-art speaker recognition systems are partially

or completely based on Gaussian mixture models (GMM).

GMM have been widely and successfully used in speaker

recognition during the last decades. They are traditionally

estimated from a world model using the generative criterion

of Maximum A Posteriori. In an earlier work, we proposed

an efficient algorithm for discriminative learning of GMM

with diagonal covariances under a large margin criterion. In

this paper, we evaluate the combination of the large margin

GMM modeling approach with SVM in the setting of speaker

identification. We carry out a full NIST speaker identification

task using NIST-SRE’2006 data, in a Symmetrical Factor

Analysis compensation scheme. The results show that the

two modeling approaches are complementary and that their

combination outperforms their single use.

Index Terms— Large margin training, Gaussian mixture

models, discriminative learning, Support vector machines,

speaker recognition.

1. INTRODUCTION

Most state-of-the-art speaker recognition systems are based

on Gaussian mixture models (GMM). These systems model

target speakers by GMM or fuse them with other modeling

approaches. GMM are traditionally estimated from a world

model using the generative criterion of Maximum A Posteri-

ori (MAP). A speaker-independent model or Universal Back-

ground Model (UBM) is first trained with the Expectation-

Maximization (EM) algorithm using various speech record-

ings gathered from a large speaker population. When en-

rolling a new speaker to the system, the parameters of the

UBM are MAP adapted to the feature distribution of the new

speaker. Traditionally, in this GMM–UBM approach, the tar-

get speaker GMM is derived from the UBM model by updat-

ing only the mean parameters, while the (diagonal) covari-

ances and the weights remain unchanged [1].

In speaker recognition applications, mismatch between

the training and testing conditions can decrease considerably

the performances. The session variability remains the most

challenging problem to solve. The Factor Analysis techniques

[2, 3], e.g., Symmetrical Factor Analysis (SFA) [4, 5], were

proposed to address that problem in GMM based systems.

Generative training does not however directly addresses

the classification problem because it uses the intermediate

step of modeling system variables, and because classes are

modeled separately. For this reason, discriminative training

approaches have been an interesting and valuable alternative

since they focus on adjusting boundaries between classes [6,

7], and lead generally to better performances than generative

methods. In the literature, various works have dealt with dif-

ferent variants on GMM front-end, combined with Support

Vector Machines (SVM) back-end; for example [8, 9, 10, 11].

SVM combined with GMM supervectors are among state-

of-the-art discriminative approaches in speaker recognition

[12, 13].

In earlier works [14, 15], we proposed an efficient algo-

rithm for discriminative learning of GMM with diagonal co-

variances under a large margin criterion. Our modeling is

based on a recent discriminative approach for multiway clas-

sification that has been used in speech recognition, the Large

Margin Gaussian mixture models (LM-GMM) [16, 17]. In

our LM-dGMM modeling, we separate the classes by defin-

ing a large margin criterion on the distances between the fea-

ture vectors and the models mean vectors. Our discriminative

models outperform the traditional generative GMM.

In this paper, we study and evaluate the combination of the

SVM and the LM-dGMM modeling approaches in the setting

of speaker recognition.

We carry out a full NIST speaker recognition task using

NIST-SRE’2006 (core condition) data [18], in a Symmetri-
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cal Factor Analysis compensation scheme; SFA can be seen

here as a preprocessing step in the LM-dGMM modeling.

We compare the performances of GMM–SFA1, LM-dGMM–

SFA2, (GMM–SFA) + SVM and (LM-dGMM–SFA) + SVM

systems3. The results show that LM-dGMM and SVM are

complementary and that their combination improves the clas-

sification performance.

The paper is organized as follows. After an overview on

GMM supervector linear kernel SVM modeling in section 2,

we describe our efficient training algorithm of LM-dGMM

models in section 3. The experimental results and their dis-

cussions are then presented in section 4.

2. GMM SUPERVECTOR LINEAR KERNEL SVM

SYSTEM

In this section we briefly describe the GMM supervector lin-

ear kernel SVM system (GSL)[12].

Given an M -components GMM trained by MAP adapta-

tion from a world model, one forms a GMM supervector by

stacking the D-dimensional mean vectors, leading to an MD

supervector. This GMM supervector can be seen as a map-

ping of variable-length utterances into a fixed-length high-

dimensional vector, through GMM modeling.

For two utterances x and y, a kernel distance based on

the Kullback-Leibler divergence between the GMM models

{µxm,Σm, wm} and {µym,Σm, wm} trained on these utter-

ances, is defined as:

K(x, y) =

M
∑

m=1

(√
wmΣ−(1/2)

m µxm

)T(√
wmΣ−(1/2)

m µym

)

.

(1)

The UBM weight and variance parameters, i.e., wm and Σm,

are used to normalize the Gaussian means µcm before feeding

them into a linear kernel SVM training [12].

3. LM-dGMM MODELING

3.1. LM-dGMM training with k-best Gaussian

In Large Margin diagonal GMM (LM-dGMM) [14], each

class (speaker) c is initially modeled by a GMM with M

diagonal mixtures, trained by MAP adaptation of a world

model. For each class c, the mth Gaussian is parame-

terized by a mean vector µcm, a diagonal covariance ma-

trix Σm = diag(σ2
m1, ..., σ

2
mD) and a scalar factor θm =

1
2

(

D log(2π) + log |Σm|
)

− log(wm), where wm is the

weight of the Gaussian and D is the dimension of the obser-

vations.

1GMM models trained in an SFA compensation scheme.
2SFA compensated LM-dGMM models.
3GMM–SFA and LM-dGMM–SFA supervectors linear kernel SVM sys-

tems.

For each training example on belonging to the class yn,

yn ∈ {1, 2, ..., C} where C is the total number of classes,

we determine the index mn of the Gaussian component of the

GMM modeling the class yn which has the highest posterior

probability. This index is called proxy label. We select too

the set Sn of the k-best UBM Gaussian components, i.e., the

indices of the k UBM Gaussian components with the highest

posterior probabilities.

For each observation on, the goal of the training algorithm

is to force the log-likelihood of its proxy label Gaussian mn

to be at least one unit greater than the log-likelihoods of the k-

best Gaussian components of all competing classes. This one

unit minimal margin to satisfy is an arbitrary choice. We note

that by using some other experimental values, the experiments

show that the performances increase. One of our actual works

consists in improving margin selection.

Given the training examples {(on, yn,mn, Sn)}N
n=1, we

seek mean vectors µcm that satisfy the large margin con-

straints in Eq. (2) [15]:

∀c 6= yn,∀m ∈ Sn,
(

d(on, µcm) + θm

)

≥ 1 +
(

d(on, µynmn
) + θmn

)

,

(2)

where d(on, µcm) =

D
∑

i=1

(oni − µcmi)
2

2σ2
mi

. Eq. (2) states that

for each competing class c 6= yn the match (in term of nor-

malized Euclidean distance) of the k nearest centroids in class

c is worse than the target centroid by a margin of at least one

unit.

Afterward, these k constraints are fold into a single one

using the softmax inequality min
m

am ≥ − log
∑

m

exp(−am).

The large margin constraints become thus:

∀c 6= yn, − log
∑

m∈Sn

exp(−d(on, µcm) − θm)

≥ 1 + d(on, µynmn
) + θmn

.

(3)

The loss function to minimize for LM-dGMM is then given

by:

Ł =

N
∑

n=1

∑

c 6=yn

max

(

0 , 1 + d(on, µynmn
) + θmn

+ log
∑

m∈Sn

exp(−d(on, µcm) − θm)

)

.

(4)

During test, we compute a match score depending on both

the target model {µcm,Σm, θm} and the UBM {µUm,Σm, θm}
for each test hypothesis. For each test frame o we use the

UBM to select the set E of k-best scoring proxy labels and

2
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compute the average log likelihood ratio using these k labels:

LLRavg = log
∑

m∈E

exp(−d(o, µcm) − θm)

− log
∑

m∈E

exp(−d(o, µUm) − θm).
(5)

This quantity provides a score for the test segment to be ut-

tered by the target model/speaker c. The higher the score is,

the greater the probability that the test segment was uttered

by the target speaker is.

3.2. Segmental training

In speaker recognition, the decision is known to be taken

on a sequence of feature vectors belonging to a speech seg-

ment. The processing is done on a segmental manner. We

rewrite thus the previous frame-based formulas in the seg-

mental training scheme, to apply collectively to multiple con-

secutive analysis frames. Let t index the Tn frames belonging

to the nth segment (i.e. nth speaker training data) {on,t}Tn

t=1.

The segment-based large margin constraints, loss function

and decision rule are thus:

∀c 6= yn,

1
Tn

Tn
∑

t=1

(

− log
∑

m∈Sn,t

exp(−d(on,t, µcm) − θm)

)

≥ 1 + 1
Tn

Tn
∑

t=1

d(on,t, µynmn,t
) + θmn,t

,

(6)

Ł =
N
∑

n=1

∑

c 6=yn

max

(

0 , 1 +
1

Tn

Tn
∑

t=1

(

d(on,t, µynmn,t
)

+ θmn,t
+ log

∑

m∈Sn,t

exp(−d(on,t, µcm) − θm)

))

,

(7)

LLRavg = 1
T

T
∑

t=1

(

log
∑

m∈Et

exp(−d(ot, µcm) − θm)

− log
∑

m∈Et

exp(−d(ot, µUm) − θm)

)

.

(8)

3.3. Handling of outliers

Outliers are feature vectors that lie considerably on the wrong

side of a decision boundary, i.e., feature vectors that are closer

to the competing class centroids than the target centroid. They

are common in speech corpora.

We adopt the strategy of [16] to detect the outliers that oc-

cur in the training data. Using the initial GMM models trained

by MAP of the UBM, we compute the accumulated hinge loss

incurred by violations of the large margin constraints in (6):

hn =
∑

c 6=yn

max

(

0 , 1 +
1

Tn

Tn
∑

t=1

(

d(on,t, µynmn,t
)+

θmn,t
+ log

∑

m∈Sn,t

exp(−d(on,t, µcm) − θm)

))

.

(9)

hn measures the decrease in the loss function Ł when an ini-

tially misclassified segment is corrected during the course of

learning. We associate outliers with values of hn > 1, and

in this case we multiply the hinge loss term by the weight

sn = 1
hn

(the correctly classified examples have a unit weight

sn = 1). We compute the weighting factors using the GMM–

UBM models and then we hold them fixed during the discrim-

inative training. The new loss function becomes thus:

Ł =

N
∑

n=1

sn

∑

c 6=yn

max

(

0 , 1 +
1

Tn

Tn
∑

t=1

(

d(on,t, µynmn,t
)

+ θmn,t
+ log

∑

m∈Sn,t

exp(−d(on,t, µcm) − θm)

))

.

(10)

We minimize this loss function using the second order opti-

mizer LBFGS [19].

In summary, the training algorithm of LM-dGMM is the

following:

• For each class (speaker), initialize with the GMM

trained by MAP of the UBM,

• select Proxy labels {mn,t} using these GMM,

• select the set Sn,t of k-best UBM Gaussian components

for each training frame,

• compute the weights sn,

• minimize the objective function according to equation

Eq. (10)

min Ł. (11)

4. EXPERIMENTAL RESULTS

We perform experiments using data of the NIST-SRE’2006

[18] speaker recognition task and compare the performances

of GMM supervectors based SVM systems. We evaluate lin-

ear kernel SVM systems trained on session-variability com-

pensated GMM supervectors:

• GMM–SFA supervectors, i.e., supervectors of gener-

ative GMM models trained in a Symmetrical Factor

Analysis (SFA) compensation scheme [4, 5],

3
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• LM-dGMM–SFA supervectors, i.e., supervectors of

SFA compensated LM-dGMM models. The LM-

dGMM–SFA models are initialized by model domain

compensated GMM, which are then discriminated us-

ing feature domain compensated data.

The comparisons are made on the male part of the NIST-

SRE’2006 core condition 1conv4w-1conv4w. 349 target

speakers are included in this large-scale application, with

22123 trials to process involving 1601 test segments, which

represents significant evaluation conditions. Performances

are measured in terms of equal error rate (EER) and min-

imum of detection cost function (minDCF). The latter is

calculated following NIST criteria [20].

For front-end processing, we follow the same procedure

as in [5]. The feature extraction is carried out by the filter-

bank based cepstral analysis tool Spro [21]. Bandwidth is

limited to the 300-3400Hz range. 24 filter bank coefficients

are first computed over 20ms Hamming windowed frames at a

10ms frame rate and transformed into Linear Frequency Cep-

stral Coefficients (LFCC) [22]. Consequently, the feature vec-

tor is composed of 50 coefficients including 19 LFCC, their

first derivatives, their 11 first second derivatives and the delta-

energy. The LFCCs are preprocessed by Cepstral Mean Sub-

traction and variance normalization [23].

After that feature normalization, we applied an energy-

based voice activity detection to remove silence frames, hence

keeping only the most informative frames. Finally, the re-

maining parameter vectors are normalized to fit a zero mean

and unit variance distribution.

We use the state-of-the-art open source software AL-

IZE/Spkdet [24, 5] for GMM–SFA modeling. To do so, A

male-dependent UBM is trained using all the telephone data

from the NIST-SRE’2004, and a session variability matrix U

of rank R = 40 is estimated on NIST-SRE’2004 data using

2934 utterances of 124 different male speakers. The SVM

training uses as a blacklist a list of 200 impostor speakers

from the NIST-SRE’2004.

Table 1 provides the EERs and minDCFs of the GMM–

SFA and LM-dGMM–SFA supervectors linear kernel SVM

systems, for models with 512 Gaussian components (M =
512). All the large margin results are obtained with the 10

best proxy labels selected using the UBM, k = 10. We also

report in the table the performances of the standalones sys-

tems GMM–SFA and LM-dGMM–SFA.

The results of Table 1 show that the SVM post-classification

of the (generative and discriminative) compensated GMM su-

pervectors leads to better performances. Indeed, the combina-

tion with SVM reduces the EER of the GMM–SFA and LM-

dGMM–SFA systems by respectively 19, 17% and 12, 55%,

which is statistically significant. The systems combination

substantially improves the recognition results.

As expected, the results of Table 1 confirm that our dis-

criminative learning approach improves the performances of

System EER minDCF(x100)

GMM–SFA 5.53% 2.18

LM-dGMM–SFA 5.02% 2.18

(GMM–SFA) + SVM 4,47% 2.17

(LM-dGMM–SFA) + SVM 4.39% 2.16

Table 1. EER(%) and minDCF(x100) performances for

GMM–SFA, LM-dGMM–SFA, (GMM–SFA) + SVM and

(LM-dGMM–SFA) + SVM systems, using models with 512

components.

the GMM models in the two cases, with and without the com-

bination with SVM. Moreover, they suggest that the two mod-

eling approaches LM-dGMM and SVM are complementary.

This can be explained first by the fact that the GMM obtained

with our large margin approach can directly be used in a SVM

classifier. Moreover, the re-estimation of the GMM mean vec-

tors under the large margin criterions leads to a more distant

(a more separated) supervectors in the (high dimensional) fea-

ture space which is beneficial to the SVM classifier. We also

emphasize that the combination of LM-dGMM and SVM ac-

celerates our speaker models evaluation during the scoring

phase.

5. CONCLUSION

We have proposed an efficient algorithm for discriminative

learning of GMM under a large margin criterion. Our algo-

rithm is suitable for the SFA channel compensation paradigm

and achieves better performances than the standard genera-

tive GMM models. We carried out experiments on the male

speaker recognition task under the NIST-SRE’2006 core con-

dition. Combined with SVM classifiers, the resulting system

outperforms the state-of-the-art speaker recognition discrimi-

native approach of GMM supervector linear kernel SVM. our

(LM-dGMM–SFA) + SVM system achieves 4.39% equal er-

ror rate and 2.16 ∗ 10−2 minDCF value. Our future work

will consist in applying the large margin concept in the Total

Variability space instead of the actual feature space. In the To-

tal Variability space [25, 26], the speakers are assumed to be

represented by identity vectors (i-vectors) containing discrim-

inative speaker specific informations. Thus, the definition of

large margin constraints on the i-vectors is very promising,

and we expect it to improve performances.
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