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ABSTRACT
Beampattern synthesis with antenna selection is cast as

linear inverse problem (LIP) in this paper and an iterative
shrinkage based optimization method is proposed to solve
this problem effectively for large antenna array. The pro-
posed method can be used to synthesize arbitrary shaped
beampattern, including multibeam forming and radiation
suppression within several angular regions. Since the itera-
tive shrinkage method converges much faster compared with
other considered methods, null positions can be changed
adaptively according to real-time scenarios. In order to
balance the trade-off between sidelobe level and null depth,
the beampattern synthesis error is reweighted by an emphasis
vector. A continuation strategy is also utilised to accelerate
convergence rate of the proposed algorithm and the number
of selected antennas is controllable by tuning the trade-off
parameter value either forward or backward during iteration
progress. Numerical results assess efficiency and practical-
ity of the proposed approach for designing non-uniformly
spaced arrays adaptively of up to a few hundred antennas.

Index Terms—
Adaptive beampattern synthesis, Antenna selection, Con-

tinuation strategy, Fast convergence rate, Iterative shrinkage

I. INTRODUCTION

For beampattern synthesis, antenna selection is an eco-
nomical and practical method to use with respect to mini-
mizing the weight, reducing hardware cost and complexity of
the array. There exist many effective methods of synthesizing
sparse array in the literature, such as heuristic method [1],
convex optimization [2], Bayesian Compressive Sensing [3],
Matrix Pencil [4] and iterative fast Fourier transform (FFT)
algorithm [5] and so on. However most of these methods are
considered computationally expensive especially when the
problem becomes large scale. Thus these methods cannot
be utilised to adaptively synthesize beampattern according
to real-time scenarios. Moreover the number of selected
antennas is not predictable and controllable for most of the
methods which has increased the hardware cost by adding
more front-ends in the receiver.

Fig. 1. Block diagram of adaptive antenna selection strategy

In order to synthesize shaped beampattern with multi-
beam and arbitrary null positions adaptively, a fast beam-
pattern synthesis algorithm based on antenna selection is
proposed in this paper. The block diagram of this strategy
is shown in Fig. 1. There are only Kmax (Kmax is less
than the number of antennas, N ) front-ends installed in the
receiver and thus the hardware cost is reduced dramatically.
The beampattern synthesis algorithm is developed based
on estimated arrival directions of the desired signal and
interference. The K (Here K ≤ Kmax should be guaranteed)
antennas with non-zero entries in the calculated excitation
weight vector are switched on and connected to following
front-ends with corresponding coefficients and remaining
antennas are kept off. In order to reduce the computational
time, we adopt an iterative shrinkage method which has
been effectively used to address large-scale optimization
problems in the area of compressive sensing and image
processing due to its simple structure. Each iteration of
this algorithm is comprising of a multiplication by a matrix
and its transpose, along with a scalar shrinkage step on the
obtained result [6]. An emphasis vector is introduced to
balance the trade-off between sidelobe level and null depth of
the synthesized beampattern. A continuation strategy is also
utilized to speed up convergence and guarantee the number
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of selected antennas K ≤ Kmax by tuning the trade-off
parameter value either forward or backward during iteration
progress.

This paper is organised as follows. In section II, the
LIP model of array beampattern synthesis is described and
the proposed Iterative Shrinkage Continuation method is
introduced as well. To show its efficiency, some numerical
results are shown in section III. Conclusions are drawn in
section IV.

II. MATHEMATICAL MODEL
Consider an N-antenna uniform symmetric array with

inter-element spacing d like shown in Fig. 1. A plane
wave with wavelength λ is impinging on the array from a
u = cos θ direction. We assume, both the whole array and
the composed subarray are symmetric due to the symmetric
synthesized beampattern, then only one half of the array
needs to be considered. The selection of an antenna in the
right half array implies the selection of the corresponding
antenna in the left half. Let P denote the position coordinate
vector of the right half array, then the array beampattern is
defined as

B(u) = wT cos(
2π

λ
Pu). (1)

where w ∈ RN is the array weight vector and T denotes
transpose operation. In order to transform the array beam-
pattern synthesis problem into LIP, we stack L uniformly
spaced desired beampattern samples into a vector fd ∈ RL
(L � N ). Define the transformation matrix as A ∈ RL×N
with the ith row Ai as

ATi = cos(
2π

λ
Pui) i = 1, ..., L (2)

We can see that the transformation matrix AT is orthogonal
and the special structure of A makes the proposed method
suitable for solving the sparse array synthesis problem [7],
which is formulated as composing a subarray with as few
as possible antennas in terms of synthesizing the desired
beampattern fd, i.e.

min ‖ w ‖0
s. j. t Aw = fd (3)

where the l0 norm function ‖ w ‖0=| i : wi 6= 0 | is defined
as the number of nonzero entries of the weight vector w.
If wi = 0, then the ith antenna is discarded; otherwise the
nonzero value is taken as the corresponding weight value.
However, l0 norm minimization problem is non-convex
and generally very hard to solve, as their solution usually
requires an intractable combinatorial search [8]. A common
alternative approach is to relax Eq. (3) by replacing the l0
norm with the well-known l1 norm, which has somewhat
similar “sparsity properties” [8]. The new problem,

min ‖ w ‖1
s. j. t Aw = fd (4)

called Basis Pursuit [9], is convex. Since the synthesized
beampattern can not be exactly same with the desired one,
there is inevitably synthesis error noise in certain scenarios.
Therefore solving the unconstrained l1-norm based least
square problem

minw∈RN {‖ w ‖1 +µ
1

2
‖ Aw− fd ‖2} (5)

is more preferable than solving the constrained problem Eq.
(4). In order to balance the trade-off between sidelobe level
and null depth, an emphasis parameter α is adopted to
reweight the synthesis beampattern error as follows:

minw∈RN {‖ w ‖1 +µ
1

2
‖ α� (Aw− fd) ‖2} (6)

Where � denotes the Hadamard Product. Use function
H(w) : RN → R to represent the latter part of Eq. (5)
and then the l1 regularization problem is rewritten as

minw∈RN {‖ w ‖1 +µH(w)} (7)

where µ is the trade-off parameter that balances between
the solution sparseness and the minimization of synthesized
beampattern error. Generally, a smaller parameter µ yields
a sparser minimizer w∗, while also a greater discrepancy on
H(w). Let us define the emphasis vector α with constant
l2 norm

√
L and then a larger entry of α implies more

emphasis, for example a deeper null can be realised by
imposing a larger weight. Let OH(w) be the gradient of
H(w), i.e.

OH(w) = AT (α�α� (Aw− fd)) (8)

Since l1 norm function is not differentiable, its sub-gradient
is calculated as follows:

SIGN(w)i = {∂ ‖ w ‖1}i =


{1} wi > 0,

[−1, 1] wi = 0,

{−1} wi < 0

(9)

It is well-known from convex analysis [9] that the optimality
condition for w∗ being one of the optimal solutions of Eq.
(7) is

0 ∈ SIGN(w∗) + µOH(w∗) (10)

where 0 is the zero vector in RN . Combining Eq. (9) and
Eq. (10), we can get that

µOHi(w∗)


= −1 w∗i > 0,

∈ [−1, 1] w∗i = 0,

= 1 w∗i < 0,

(11)

We can derive another equivalent optimality condition for
Eq. (7) based on Eq. (11) [7]. That is , for any scalar τ > 0,

w∗i = s τ
µ
(h(w∗)i) (12)

with h(w∗) = w∗ − τOH(w∗). We refer to sρ(·) as the
shrinkage operator as follows,

sρ(·) = sign(·)max{| · | −ρ, 0}, where ρ > 0 (13)
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Table I. Iterative Shrinkage Continuation Algorithm
Step1 Initialising w0 = 0, µ = 0.5, τ = 1/λmax and uniform α;
Step2 While (not converged, i.e. ek+1 ≥ 1e− 4)

Iterate according to Eq. (14)
ek+1 =‖ wk+1 − wk ‖2

End while
Step3 If the desired beampattern achieved, then terminate;

Otherwise, set w0 = wk+1 and go to Step 4a or 4b.
Step4a Change value of µ continuously, and iterate Step 2-Step 3,

until the suitable value of µ is found.
Step4b Fix the chosen value of µ and continuously change value

of null weight in α; Iterate Step 2-Step 3.

where sign(x) is the indicator function with value zero when
x = 0. Intuitively, h(·) resembles a gradient descendent step
for decreasing H(w), and sρ(·) reduces the magnitude of
each nonzero component of the input vector by an amount
less than or equal to ρ, thus decreasing the l1 norm [7]. It is
natural to get the unique minimizer solution of Eq. (7) using
an iterative method, i.e. the solution of the k+1th iteration
is

wk+1 = s τ
µ
(wk − τOH(wk)) (14)

The convergence rate of the iterative shrinkage method is
q-linear under certain conditions on H and τ . Under weaker
conditions, they also exhibits r-linear convergence rate. The
detail of convergence analysis can be found in [7]. Like
what we have mentioned above, the orthogonal property of
transformation matrix A makes the proposed algorithm more
effective for array beampattern synthesis problem. According
to [7], the parameter τ should be chosen within the range
τ ∈ (0, 2/λmax) in order to satisfy the convergence condi-
tion, where λmax is the maximum eigenvalue of the Hessian
of H(w). Recently some speed-up algorithms are shown
to emerge from different considerations, such as TwIST is
proposed to solve the problem with ill-conditioned matrix
A [10]. Here we adopt the continuation strategy to increase
the value of parameter µ continuously [7]. The approximate
solution of the problem associated with µp is used as the
starting point of the optimization problem associated with
µp+1. The detail procedure of Iterative Shrinkage Continu-
ation method is shown in Table I.

III. SIMULATION RESULTS
This section exhibits some numerical results using the

proposed method for both linear and planar array to validate
the effectiveness and efficiency.

III-A. Linear Array
Firstly the effect of trade-off parameter µ on the array

sparseness and synthesized beampattern is investigated. Let
us assume a linear symmetric array with 200 uniformly
spaced antennas and a uniform emphasis vector. The desired
beampattern has one mainlobe around θ = 0 and two nulls
within the elevation angle (30− 32) and (59− 61) degrees
respectively with −80dB depth. The desired sidelobe level

Fig. 2. Trade-off curve with respect to different µ and null
weight.

(SLL) is set to be −40dB. The number of beampattern
samples, L, is chosen as 100 in this example. The value
of the trade-off parameter µ is changing from 0.5 to 20.
Since there are only Kmax = 150 front-ends installed in the
receiver, the suitable number of selected antennas needs to
be determined first. The trade-off curve between the l0 norm
of solution w and the synthesis beampattern error is shown
in Fig. 2. We can see that the simulation result coincides
exactly with what we have predicted mathematically: the
sparseness of solution w decreases with the increasing value
of µ, while the synthesized beampattern becomes closer to
the desired one. Moreover it is convenient to control the
number of selected antennas, K less than or equal to Kmax,
by tuning the value of µ either forward or backward during
iteration progress through the proposed continuation strategy.

Here the trade-off parameter is chosen as µ = 2 and
µ = 3.5, correspondingly the number of selected antennas
is K = 54 and K = 60 respectively. The synthesized
beampatterns of two arrays are compared in Fig. 3. We
can see that the null depth is deeper and the sidelobe level
is also a little lower for the larger array than the smaller
one. However the performance loss can be compensated by
tuning the emphasis vector as shown in the next experiment.
It is also noted that the mainlobe width does not change
much even with larger aperture length, because the number
of beampattern samples L is usually less than N/2 and thus
the minimum mainlobe width is restricted to approximately
180/N degrees for the desired beampattern using the pro-
posed method.

Next the effect of emphasis vector on the synthesized
beampattern shape is discussed. Since there is not much
chance to decrease the mainlobe width (unless changing the
beampattern sample number L with the sacrifice of high
sidelobes) and interference suppression is the main focus of
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Fig. 3. Beampatterns of two arrays with different numbers of
selected antennas (Uniform emphasis vector is chosen here)

our proposed adaptive antenna selection strategy, the weights
of emphasis vector within mainlobe and sidelobe regions are
set to be one. The null weight value is changing from 0 to
3 in order to see the effect of different null weights. The
trade-off parameter µ is set to be 2 according to the above
experiment. The trade-off curve with respect to different null
weights is shown in Fig. 2. We can see that the trade-off
curve does not change much with respect to different null
weights. Thus we determine the value of µ first and then
adjust the null weight according to the desired beampattern
in the algorithm Table I. The beampatterns of null weight
value being 1 and 1.3 are compared in Fig. 4. it is clear
that increasing null weight makes the sidelobe level a little
higher, but with much deeper nulls as what we have expected
from Eq. (7). Moreover we can also see that the synthesized
beampattern of the smaller array with 108 antennas and null
weight being 1.3 has deeper nulls than the larger array with
120 antennas and null weight being 1 by comparing Fig.
3 and Fig. 4. Thus the selected subarray can preserve the
array processing performance with dramatic hardware cost
reduction.

Finally the computational time of the proposed algorithm
is compared with some other considered methods, including
the iterative FFT and convex optimization method which
uses the interior point based second order cone program-
ming to solve Eq. (5) through CVX software. The iterative
reweighted l1 norm is adopted to obtain a sparse solution
for the convex optimization method [2]. A uniform em-
phasis vector is chosen for this experiment. A 200-antenna
symmetric linear array which is thinned to 144 elements
in [5] is used for comparison. The corresponding beampat-
terns synthesized by convex optimization and the proposed
method are compared in Fig. 5. The simulation results are
summarized and compared in Table II where the “Average

Fig. 4. Beampatterns of 108-antenna subarray with different
null weights (The trade-off parameter µ is 2 here)

Table II. Comparison of Simulation Results Among Shrink-
age, Convex optimization and iterative FFT methods

Method 3-dB Beamwidth Peak SLL Computational time
(degree) (dB) (second)

Shrinkage 1 -25.56 2e-4
CVX 0.9 -24.85 1.5185
FFT 0.6 -24.64 10-second order

Method Average SLL Aperture Length Antenna Number
(dB) (λ) (selected)

Shrinkage -39 99.5 144
CVX -40.5 99.5 144
FFT -24.64 99.5 144

SLL” is referred to the average sidelobe level excluding
high sidelobes around the mainlobe (Note that the results
corresponding to the iterative FFT method are taken from
[5]). The operating laptop for simulation has 2.5GHz clock
signal and 8GB RAM memory. We can see that although
the beampattern synthesized by the iterative FFT method
has narrower mainlobe width, whereas with higher sidelobe
level and much more computational time (of 10-second
order) due to 1000 runs. The beampatterns synthesized by
convex optimization and the proposed method are nearly
same, however the proposed method is much faster which
is more important for real-time application. The excitation
weight vector obtained from the proposed method is shown
in the lower plot of Fig. 5.

III-B. Planar Array
Now we proceed to run our simulation with a 20 × 20

symmetric planar array. We choose the trade-off parameter
as µ = 2 and correspondingly a 236-antenna symmetric
subarray is composed. The synthesized beampattern is shown
in Fig. 6. We can see that the null depth is −80dB. The
computational time for synthesizing this planar array is at
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Fig. 5. Beampatterns of convex optimization and iterative
shrinkage method. The inside plot is the excitation weight
returned from iterative shrinkage method.

Fig. 6. Beampattern of 236-antenna subarray with Iterative
Shrinkage Continuation method, the inside plot is the cut
along the diagonal line

most 4.3e-3 seconds. In one word, the Iterative Shrinkage
Continuation method works well for both linear and planar
array. The fast convergence property of the proposed ap-
proach is more evident for synthesizing large scale antenna
array.

IV. CONCLUSION
An Iterative Shrinkage Continuation method is proposed

in this paper to synthesize sparse arrays with shaped beam-
pattern adaptively. The proposed method can design arbitrary
shaped beampattern with multi-beam and several null angle
regions. The main advantage of the proposed method is its
fast convergence rate compared with the classical steepest

descent method and other considered sparse array synthesis
algorithms especially for large antenna array. Moreover the
trade-off between sidelobe level and null depth can be
balanced by adjusting the emphasis vector and the number
of selected antennas is controllable by tuning the trade-off
parameter during iteration progress using the continuation
strategy. Therefore, the proposed antenna selection based
Iterative Shrinkage Continuation method can be used in
real-time application to adaptively synthesize large array
beampattern.
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