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SIGNAL RECOVERY BY MINIMIZING THE MOREAU ENVELOPE
OVER THE FIXED POINT SET OF NONEXPANSIVE MAPPINGS

Isao Yamada and Shunsuke Ono

Department of Communications and Computer Engineering, Tokyo Institute of Technology

ABSTRACT

Many inverse problems in signal processing have been reduced to

a certain nonsmooth convex optimization problem of which the so-

lution set is a closed convex set in a real Hilbert space. This fact

indicates that each point in the solution set may differ too largely

in some aspects to be ignored. However, almost all existing algo-

rithms designed specially for such a convex optimization problem

converge to only an unspecified point in the solution set and cannot

pick up a best one, in some additional strategic criterion, among the

set. In this paper, we present a flexible utilization of the hybrid steep-

est descent method for the strategic point selection among the solu-

tion set of nonsmooth convex optimization problems. The proposed

method can minimize sum of the Moreau envelope of nonsmooth

convex functions over the fixed point set of a variety of nonexpan-

sive mappings (e.g., Proximal Forward-Backward splitting operator,

Douglas-Rachford splitting operator and Primal-Dual splitting oper-

ator) that characterize precisely the solution sets of the nonsmooth

convex optimization problems.

Index Terms— Signal recovery, Convex Optimization, Moreau

envelope, Hybrid steepest descent method

1. INTRODUCTION

The goal of classical estimation in signal processing has been to find

a unique estimate by minimizing a certain objective function de-

signed heavily based on the solvability of the resulting optimization

problem, which may lead to unreliable solutions inconsistent with

the observed data and a priori knowledge. On the other hand, the

set theoretic estimation [4] aims to characterize the set of all accept-

able estimates that are best consistent with all available information

arising from the observed data and a priori knowledge. In a simplest

case where each piece of available information is associated with a

set in a common solution space and these sets are consistent, the set

of all acceptable estimates is given as the intersection of these sets.

Unfortunately, in many practical situations, the translation of each

piece of information into a set in a common solution space is not

simple task. Moreover, such pieces of information become often in-

consistent mainly due to the unavoidable uncertainties caused, e.g.,

by the model mismatch and the randomness of the noise process, etc.

To cope with such general situations, it is natural to define a general-

ized feasible set [5] that is the set of all points satisfying maximally

a certain acceptable consistency measure for all available informa-

tion, and hence the generalized set theoretic estimation problems are

automatically reduced to optimization problems.

In the last decade, with the remarkable advance of computational

algorithms for minimization of nonsmooth convex functions, signifi-

This work is supported in part by JSPS Grants-in-Aids (B-21300091)
and (24 2522).

cant progress has been made in inverse problems and signal process-

ing [3, 6, 7, 8, 10, 11]. The set of all minimizers of a nonstrictly

convex function is a closed convex set which is in general an infinite

point set. Although this set can be interpreted as a generalized con-

vex feasible set [13] in a wider sense, we call this set the 1st stage

solution set in this paper. In the scenarios of signal processing, each

point in the set may differ too largely in some aspects to be ignored.

This situation demands strongly for a certain strategic selection

of a point exactly among the 1st stage solution set. Note that, if

we minimize the sum of the above nonstrictly convex function and

a certain new convex function introduced for a strategic selection,

such a minimizer has no longer guarantee to be an element of the

1st stage solution set, and hence it is often hard to be accepted, as

an improvement from the elements in the set, e.g., for the purpose of

the medical diagnostic imaging.

An ideal strategic selection is realized if we have some algorith-

mic solution to a hierarchical convex optimization, i.e., minimization

of an additionally introduced convex function, called the 2nd stage

cost function, over the 1st stage solution set. Unfortunately, almost

all existing convex optimization schemes cannot be applied to such

a hierarchical convex optimization because these schemes converge

to only an unspecified point in the 1st stage solution set.

In this paper, observing the fact that many existing algorithms

[1, 6, 7, 8, 10, 11] for the nonsmooth convex optimization have been

established based on elegant translations of convex optimization

problems into certain fixed point problems of nonexpansive map-

pings designed in terms of the proximity operators in a real Hilbert

space (see, e.g., Proximal forward backward splitting in Fact 3(a),

Douglas-Rachford splitting in Fact 3(b) and Primal-Dual splitting in

Fact 4), we demonstrate that such a hierarchical convex optimiza-

tion can be solved simply by applying the hybrid steepest descent

method [13, 14, 15] to the nonexpansive mapping and the gradient

of the Moreau envelope of nonsmooth convex functions. Moreover,

to show the effectiveness of the proposed strategic selection, we

present an application of the proposed strategy to an image restora-

tion problem by integrating the hybrid steepest descent method and

a Primal-Dual splitting [8].

2. CONVEX OPTIMIZATION AND FIXED POINT OF

NONEXPANSIVE MAPPINGS

In the following, we list minimum notions in convex analysis and

fixed point theory of nonexpansive mapping, which are necessary

for our discussion (See, e.g., [1, 15] for detailed account on these

notions). LetH be a real Hilbert space equipped with an inner prod-

uct 〈·, ·〉 and its induced norm ‖ · ‖.
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2.1. Tools for Convex Optimization

Fact 1 (Elements of Convex Analysis)

(a) (Convex set) A setC ⊂ H is called convex if λx+(1−λ)y ∈
C for every x, y ∈ C and every λ ∈ [0, 1]. If a set C ⊂ H is

closed as well as convex, it is called closed convex.

(b) (Convex function) A function f : H → (−∞,∞] := R ∪
{∞} is called convex if

(∀x,y ∈ H, ∀λ ∈ (0, 1))

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

In particular, a function f : H → (−∞,∞] is called strictly
convex if

f (λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

for all x 6= y and all λ ∈ (0, 1).

(c) (Proper lower semicontinuous convex function) A function

f : H → (−∞,∞] is called lower semicontinuous if the

set lev≤α(f) := {x ∈ H | f(x) ≤ α} is closed for every
α ∈ R (Note: If f is continuous over H, f is lower semi-

continuous). A function f : H → (−∞,∞] is called proper
if

dom(f) := {x ∈ H | f(x) <∞} 6= ∅.

The set of all proper lower semicontinuous convex functions

is denoted by Γ0(H).

(d) (Proximity operator and Moreau envelope) The proximity op-

erator of index γ ∈ (0,∞) of f ∈ Γ0(H) is defined by

proxγf : H → H : x 7→ arg min
y∈H

[

f(y) +
1

2γ
‖x− y‖2

]

,

where the existence and the uniqueness of the minimizer are

guaranteed. The function

γf : H → R : x 7→ min
y∈H

[

f(y) +
1

2γ
‖x− y‖2

]

= f
(

proxγf (x)
)

+
1

2γ

∥

∥x− proxγf (x)
∥

∥

2

is called the Moreau envelope of index γ ∈ (0,∞). γf
satisfies (i) f(x) ≥ γf(x) (∀γ ∈ (0,∞), ∀x ∈ H), (ii)

lim
γ↓0

γf(x) = f(x) (∀x ∈ dom(f)) and (iii) γf is Gâteaux

differentiable1 and its derivative is given by

∇γf(x) =
x− proxγf (x)

γ
, (1)

and hence∇γf : H → H is 1
γ
-Lipschitzian.

(e) (Fenchel-Rockafellar conjugate) For any f ∈ Γ0(H), the
function f∗ : H ∋ y 7→ supx∈H (〈y,x〉 − f(x)) ∈
(−∞,∞] satisfies f∗ ∈ Γ0(H). f∗ is called the Fenchel-

Rockafellar conjugate of f . For any γ ∈ (0,∞), the proxim-
ity operators proxγf and proxγ−1f∗ are related by

I = proxγf + γproxγ−1f∗ ◦ γ−1I,

where I stands for the identity operator.

1A function g : H → R is called Gâteaux differentiable at x ∈ H if there

exists a(x) ∈ H such that limδ→0
g(x+δh)−g(x)

δ
= 〈a(x), h〉 (∀h ∈ H).

In this case, ∇g(x) := a(x) is called Gâteaux derivative (or gradient) of g
at x.

Example 1 (Proximity Operators)

(a) (A principle of splitting) For multiple real Hilbert spaces

(Xj , 〈·, ·〉j , ‖ · ‖j) (j = 1, . . . , p),

define the standard product space

(H := X1 × · · · × Xp, 〈·, ·〉, ‖ · ‖)

which is a real Hilbert space equipped with the inner prod-

uct 〈(x1, . . . ,xp), (y1, . . . ,yp)〉 :=
∑p

j=1〈xj ,yj〉j and its

induced norm ‖ · ‖. Suppose that a function f ∈ Γ0(H) is
defined by f :=

∑p

j=1 ϕj ∈ Γ0(H) with ϕj ∈ Γ0(Xj)

(j = 1, . . . , p). Then we have

proxγf (x1, . . . ,xp) =
(

proxγϕ1
(x1), . . . , proxγϕp

(xp)
)

.

(b) (Metric projection) For a given nonempty closed convex set

C ⊂ H and x ∈ H, there exists a unique PC(x) ∈ C
satisfying

‖x− PC(x)‖ = min
z∈C

‖x− z‖ =: dC(x).

The mapping which assigns x ∈ H to PC(x) ∈ C is called

the metric projection onto C. The metric projection PC sat-

isfies PC(x) = proxγiC
(x) (∀γ ∈ (0,∞), ∀x ∈ H), where

iC : H ∋ x 7→

{

0 if x ∈ C
∞ if x 6∈ C.

(c) (Soft-thresholding operator [9, 6]) For a given nonempty

closed convex set C ⊂ H and γ ∈ (0,∞),

proxγdC
(x)

=

{

x+ γ(PC(x)− x)/dC(x) if dC(x) > γ
PC(x) otherwise.

2.2. Translation of Convex Optimization Problem into Fixed

Point Problem

Fact 2 (Nonexpansive Mapping and Fixed points [1, 15])

(a) A mapping T : H → H is called nonexpansive if ‖T (x) −
T (y)‖ ≤ ‖x − y‖ (∀x,y ∈ H). If the fixed point set

Fix(T ) := {x ∈ H | T (x) = x} is nonempty, Fix(T )
is guaranteed to be closed convex inH. In particular, if there

exist α ∈ [0, 1) and a nonexpansive mapping N : H → H
satisfying T = (1−α)I +αN , T is called α-averaged non-
expansive.

(b) If Ti : H → H (i = 1, 2) are αi-averaged nonexpansive,

T := T1T2 is α1+α2−2α1α2

1−α1α2
-averaged nonexpansive. More-

over, for any nonexpansive mapping T satisfying Fix(T ) 6=
∅, T is α-averaged for α ∈ (0, 1) if and only if T is α−1(1−
α)-strongly attracting, i.e.,

(∀x ∈ H, ∀z ∈ Fix(T ))

α−1(1− α)‖x− T (x)‖2 ≤ ‖x− z‖2 − ‖T (x)− z‖2.

(c) For any f ∈ Γ0(H) and γ ∈ (0,∞), proxγf : H →

H is 1/2-averaged, and hence ∇ (γf) : H → H is 1
γ
-

Lipschitzian

2
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Fact 3 (Fixed Point Characterization I [1, 15])
Suppose that f1, f2 ∈ Γ0(H) satisfy

S := arg min
x∈H

[f1(x) + f2(x)] 6= ∅. (2)

(a) (Proximal forward-backward splitting operator) Suppose

that f1 is Gâteaux differentiable on H with its gradient

∇f1 : H → H. Then x
⋆ ∈ H satisfies x⋆ ∈ S if and only

if x⋆ ∈ H is a fixed point of the proximal forward-backward

splitting operator : proxµf2
(I − µ∇f1) for any µ > 0, i.e.,

x
⋆ = proxµf2

(I − µ∇f1) (x
⋆). If in addition ∇f1 is κ-

Lipschitzian for some κ > 0, the proximal forward-backward
splitting operator proxµf2

(I − µ∇f1) with µ ∈
(

0, 2
κ

]

is nonexpansive. Moreover, this operator is 1
2−γ

-averaged

nonexpansive if µ ∈
(

0, 2γ
κ

]

⊂
(

0, 2
κ

)

In particular, set-

ting f2 := iC for a closed convex set C ⊂ H reproduces

the characterization of the minimizers of f1 over C by the

fixed point set of the 1
2−γ

-averaged nonexpansive mapping

PC (I − µ∇f1) for µ ∈
(

0, 2γ
κ

]

⊂
(

0, 2
κ

)

.

(b) (Douglas-Rachford splitting operator) Suppose that

⋃

λ>0

{λx | x ∈ dom(f1)− dom(f2)}

is a closed subspace of H. Then by using nonexpansive

mappings rproxγfi := 2proxγfi − I (i = 1, 2) and

rproxγf1
rproxγf2 for γ ∈ (0,∞), we have

x
⋆ ∈ H minimizes f1 + f2

⇔

{

x
⋆ = proxγf2

(y),
y ∈ Fix

(

rproxγf1rproxγf2

)

,

which means that S can be expressed as the image of

proxγf2
of the fixed point set of the nonexpansive mapping

rproxγf1
rproxγf2 .

Fact 4 (Fixed Point Characterization II [8])
For a pair of real Hilbert spaces X1 and X2, consider the solution

set

Sp := arg min
x∈X1

[f1(x) + f2(x) + f3(L(x))] 6= ∅, (3)

of a convex optimization problem, where L : X1 → X2 is a bounded

linear operator, f1 ∈ Γ0(X1) is Gâteaux differentiable with β-
Lipschitzian gradient ∇f1 : X1 → X1, and f2 ∈ Γ0(X1), f3 ∈
Γ0(X2). Suppose that

⋃

λ>0

{λx | x ∈ L(dom(f2))− dom(f3)}

is a closed subspace of X1. Then it is well known that the solution

set Sd of the dual formulation is nonempty [1], i.e.,

Sd := arg min
y∈X2

[(f1 + f2)
∗(−L∗

y) + f∗
3 (y)] 6= ∅,

where L∗ : X2 → X1 is the adjoint operator of L, i.e., L∗

is the unique bounded linear operator satisfying 〈L(x),y〉2 =
〈x, L∗(y)〉1 (∀x ∈ X1 and ∀y ∈ X2).

Moreover, the set Sp × Sd ⊂ X1 × X2 can be expressed as the

fixed point set of a nonexpansive mapping T : X1 ×X2 → X1 ×X2

defined, together with the inner product 〈·, ·〉P and its induced norm

‖·‖P , as follows [8].

For the standard product space (H := X1 ×X2, 〈·, ·〉, ‖ · ‖)
(see Example 1(a)), define first a strongly positive bounded linear

operator

P : (x1,x2) 7→

(

1

τ
x1 − L∗(x2),−L(x1) +

1

σ
x2

)

,

where τ > 0, σ > 0 are chosen to satisfy 1
τ
− σ‖L‖2 ≥ β

2
. Define

also a new Hilbert space (HP := X1 ×X2, 〈·, ·〉P , ‖ · ‖P), where
〈(x1,x2), (y1,y2)〉P := 〈P(x1,x2), (y1,y2)〉 and ‖(x1,x2)‖P
:=

√

〈(x1,x2), (x1,x2)〉P . Then the mapping T : (x1,x2) 7→
(y1,y2) defined by

{

y1 := proxτf2 [x1 − τ (∇f1(x1) + L∗(x2))]
y2 := proxσf∗

3

[x2 + σL (2y1 − x1)]

is nonexpansive (averaged nonexpansive if 1
τ
− σ‖L‖2 > β

2
) in

(HP := X1 ×X2, 〈·, ·〉P , ‖ · ‖P), and satisfies

Fix(T ) = Sp × Sd ⊂ HP .

Remark 1 (Expressions of Solution Sets with Computable Nonex-

pansive Mappings)

(a) From Fact3(a), we see that the set S in (2) can be expressed

as the fixed point set of a computable nonexpansive mapping

if the lipschitzian gradient ∇f1 and the proximity operator

proxµf2
are available.

(b) From Fact3(b), we see that the set S in (2) can be expressed

in terms of the fixed point set of a computable nonexpansive

mapping if the proximity operators proxγfi
(i = 1, 2) are are

available.

(c) From Fact 4, we see that the set Sp in (3) can be expressed

in terms of the fixed point set of a computable nonexpansive

mapping if the lipschitzian gradient ∇f1 and the proximity

operators proxγfi
(i = 2, 3) are available. Different fixed

point characterizations of Sp ×Sd could be reproduced, e.g.,

from the results in [7].

3. ITERATIVE APPROXIMATION OF A FIXED POINT OF

NONEXPANSIVE MAPPING

As seen in Remark 1, the solution set of a variety of convex opti-

mization problems can be expressed precisely in terms of the fixed

point set of a certain computable nonexpansive mapping. This fact

implies that we can approximate iteratively a point in the solution set

by applying the following algorithms.

Fact 5 (Fixed Point Algorithms for Nonexpansive Mappings) Let

T : H → H be a nonexpansive mapping having Fix(T ) 6= ∅.
Then we can apply the following algorithms to approximate a point

in Fix(T ).

I. (Krasnosel’skii-Mann iterative process (see, e.g., [1])) For

any initial point x0 ∈ H and any real sequence (αn)n≥0 ⊂
[0, 1] satisfying

∑

n≥0 αn(1 − αn) = ∞, the sequence

(xn)n≥0 ⊂ H, generated by

xn+1 := (1− αn)xn + αnT (xn),

converges weakly to a point in Fix(T ), which depends on the
choices of x0 ∈ H and the real number sequence (αn)n≥0 ⊂
[0,∞).

3
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II. (Hybrid steepest descent method (see, e.g., [13, 14, 15])) Sup-

pose that Θ ∈ Γ0(H) is Gâteaux differentiable with the gra-

dient ∇Θ which is κ-Lipschitzian over T (H) := {T (x) ∈
H | x ∈ H}. The hybrid steepest descent method :

xn+1 := T (xn)− αn+1∇Θ(T (xn)) (4)

has been developed to approximate a point in

Ω :=

{

x
⋆ ∈ Fix(T ) | Θ(x⋆) = min

x∈Fix(T )
Θ(x)

}

6= ∅.

(a) Suppose that the gradient ∇Θ is η-strongly mono-

tone over T (H), which guarantees |Ω| = 1. Then,

by using any sequence (αn)n≥1 ⊂ [0,∞) satisfying

(W1) limn→∞ αn = 0, (W2)
∑

n≥1 αn = ∞, (W3)
∑

n≥1 |αn − αn+1| < ∞ or (αn)n≥1 ⊂ (0,∞) sat-

isfying (L1) limn→∞ αn = 0, (L2)
∑

n≥1 αn = ∞,

(L3) limn→∞(αn − αn+1)α
−2
n+1 = 0], the sequence

(xn)n≥0 generated, with arbitrary x0 ∈ H, by

(4) converges strongly to the uniquely existing point

u⋆ ∈ Ω

(b) Assume dim(H) <∞ and T : H → H is an averaged

nonexpansive mapping with bounded Fix(T ) 6= ∅.
Then the sequence (xn)n≥0 generated by (4), for

arbitrary x0 ∈ H, satisfies lim
n→∞

dΩ(xn) = 0 if

(αn)n≥1 ⊂ (0,∞) satisfies (W1), (W2) and (αn)n≥1 ∈
ℓ2, i.e.,

∑

n≥1 α
2
n <∞.

4. APPLICATION TO SIGNAL RECOVERY

4.1. Problem Formulation

Many signal recovery problems, such as signal reconstruction, im-

age restoration, compressed sensing, and tensor completion, can be

cast as an inverse problem where the goal is to estimate an unknown

signal ū ∈ R
N from an observation

v = N (Φū), (5)

where Φ ∈ R
K×N (K ≤ N ) is a linear degradation operator, and

N some noise contamination process being not necessarily additive.

To achieve satisfactory signal recovery, such an inverse problem is

often translated into the following optimization problem: find u⋆ in

arg min
u∈RN

[φ(M1u) + ψ(Φu) + iD(u) (=: J(u))] , (6)

where φ ∈ Γ0(Y1) is a possibly nonsmooth convex prior, (Y1 is a

finite dimensional real Hilbert space), ψ ∈ Γ0(R
K) a data-fidelity

function,M1 : RN → Y1 a bounded linear operator, andD a closed

convex set which represents some possible numerical range of ū.

Here we assume that the proximity operators of φ, ψ and the metric

projection ontoD are available.

Although this approach brings us a reasonable estimate, the

non-strict convexity of the 1st stage cost function often results in

infinitely-many minimizers (i.e., acceptable estimates) to the prob-

lem, and they are considerably different in another measure. Hence it

is natural to characterize a more reasonable solution as the following

hierarchical convex optimization problem: find u⋆⋆ in

arg min
u
⋆∈argmin J(RN )

γϕ(M2u), (7)

where ϕ ∈ Γ0(Y2) (Y2 is another finite dimensional real Hilbert

space) is another possibly nonsmooth convex prior which reflects

some desired property discarded in φ so as to select a higher quality

signal among all solutions to (6).

4.2. Solver via The Hybrid Steepest Descent Method

In the following, the set of minimizers in (6) is characterized exactly

in terms of the fixed point set of a nonexpansive mapping, which

makes the hybrid steepest descent method applicable to the hier-

archical convex optimization problem (7). By letting X1 := R
N ,

X2 := Y1 × R
K , f1 : RN → R : u 7→ 0, f2 : RN → [0,∞] :

u 7→ iD(u), L : R
N → Y1 × R

K : u 7→ (M1u,Φu), and
f3 : X2 → [0,∞] : (z1, z2) 7→ φ(z1) + ψ(z2), we see that the
problem (6) is interpreted as the problem (3), and hence the problem

(7) can be expressed as: find (u⋆⋆, z⋆⋆1 , z
⋆⋆
2 ) in

arg min
(u⋆,z⋆

1
,z⋆

2
)∈Sp×Sd

Θ(u⋆, z⋆1, z
⋆
2), (8)

where Θ : HP → R : (u, z1, z2) 7→ γϕ(M2u). Since T is com-

putable from the assumption, and the gradient of Θ is given by

∇Θ : HP → HP : (u, z1, z2) 7→ (M∗
2 ◦ (∇γϕ) ◦M2(u),0,0)

and obviously Lipschitzian, we can apply the hybrid steepest descent

method to the problem (8), resulting in

(u(n+1), z
(n+1)
1 , z

(n+1)
2 ) :=

T (u(n), z
(n)
1 , z

(n)
2 )− αn∇Θ(T (u(n), z

(n)
1 , z

(n)
2 )).

4.3. Numerical Examples

We examined the recovery performance of the hierarchical convex

optimization (7) on image restoration. In this experiment, the linear

degradation operatorΦ in (5) was set to a masking operator that con-

sists of a subset of randomly chosen K rows of the identity matrix,

so that the degraded observation v is remaining pixels. We consider

to restore a full image from it. The test image “Barbara” were ran-

domly missing about 40% of their original pixels (i.e.,K ≈ 0.6N ),

and contaminated by an additive white Gaussian noise with the stan-

dard deviation 5.
For φ(M1·), we used the Total Variation, where φ : R

N ×

R
N → (0,∞) : (x,y) 7→

∑N

i=1

√

x2i + y2i , M1 : RN → R
N ×

R
N : u 7→ (Dvu,Dhu), Dv,Dh are vertical and horizontal dis-

crete gradient operators. In this case, the proximity operator of φ is

given by Example 1(a)(c). For ϕ(M2·), we adopted the ℓ
1 norm of

curvelet coefficients, where ϕ : RÑ → (0,∞) : x 7→
∑Ñ

i=1 |xi|,

M2 : RN → R
Ñ : u 7→ Cu, and C is the discrete curvelet trans-

form with four scales and 16 angles [2]. Although the closed form

expression of the proximity operator of ϕ(M2·) is unavailable due
to the non-semi-orthogonality ofM2(= C), ∇ (γϕ ◦M2) is avail-
able as long as proxγϕ is available (see (1)). The proximity operator

of ϕ is given by Example 1(a)(c).

This hierarchical formulation is designed for restoration of an

image having clear edges and contours among all possible smooth

images in the set of minimizers in (6).

The data-fidelity function ψ was set to iCε
v

, where Cε
v
:= {x ∈

R
K | ‖x− v‖ ≤ ε}, and the metric projection onto Cε

v
is given by

PCε
v

: RK → R
K : x 7→

{

x, if ‖x− v‖ ≤ ρ,

v + ε x−v

‖x−v‖
, otherwise.

The set D was designed as D := {x ∈ R
N | xi ∈ [0, 255] i =

1, . . . , N} which represents the range of pixel intensity. The metric
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(a) Degraded. (b) Conventional.

PSNR=23.06 dB, SSIM=0.8077

(c) Proposed.

PSNR=24.22 dB, SSIM=0.8437

Fig. 1. The resulting images.

projection ontoD is given by

PD : RN → R
N : xi 7→











0, if xi < 0,

xi, if 0 ≤ xi ≤ 255,

255, if xi > 255.

The parameters are set as (ε, τ, σ, αn) = (‖Φū− v‖, 0.4, 0.4, 1
n
).

Figure 1 depicts the resulting images. Compared with the re-

stored image in Fig. 1(b) obtained by solving (6) (conventional), the

restored image in Fig. 1(c), which is restored by solving the problem

(7) (proposed), has clear striped patterns and indicates higher PSNR

[dB] and SSIM [12].

5. CONCLUSION

This paper has presented a flexible utilization of the hybrid steepest

descent method for a strategic point selection among the solution set

of nonsmooth convex optimization problems. The numerical exam-

ple for an image restoration application demonstrates the effective-

ness of the proposed formulation as a hierarchical convex optimiza-

tion.
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