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ABSTRACT

Traditional adaptive array processing techniques are based
on a fixed array configuration. We propose a novel recon-
figurable adaptive antenna array strategy in the context of
Global Navigation Satellite Systems to add the array config-
uration as an extra degree of freedom. Specifically we for-
mulate the problem as selecting K from N antennas that are
then connected to the following K front-ends and array pro-
cessing network via switches. The determination of optimal
K-antenna subarray configuration can be expressed as a min-
imization of Spatial Correlation Coefficient (SCC). It denotes
the spatial separation between the desired signal and inter-
ference. A lower bound of the SCC gives the best achiev-
able performance of all K-antenna subarrays. Two relaxation
methods are introduced to obtain the lower bound. The sim-
ulation results show that the lower bound formula is reliable
in any scenario and the optimum SCC value of an array with
more antennas is even larger than the small array under some
scenarios. Thus the subarray can reduce both hardware and
computational cost dramatically with preserved performance
supposing it is optimally configured.

Index Terms— Lagrange dual relaxation, Reconfigurable
antenna array, SCC, SDP relaxation, SINR

1. INTRODUCTION

Radio Frequency Interference (RFI) is proved to be a signif-
icant obstacle to the successful operation of Global Naviga-
tion Satellite Systems (GNSS) receivers. The use of adaptive
antenna arrays to mitigate the detrimental effects of RFI on
GNSS receivers has gained significant interest in the signal
processing community. Most of the work in the literature fo-
cuses on adaptive beamforming and filtering techniques under
a predetermined array configuration [1, 2]. However, the ar-
ray configuration plays a fundamental role in the performance
of adaptive array processor and is therefore an important de-
sign problem [3, 4]. Fixing the array architecture can lead to
significant inefficiencies and/or loss in performance of array
signal processing under different scenarios. When the array

dimensionality is large, adaptive array can become unneces-
sarily computationally expensive [5]. In order to reduce the
cost (both hardware and software) while preserving the per-
formance, we propose in this paper a reconfigurable adaptive
antenna array strategy to “choose K from N antennas” that
are then switched into the network and connected to the K
following front-ends as shown in Fig. 1. Then the corre-
sponding adaptive array weight vector is developed based on
the chosen subarray to obtain the maximum interference sup-
pression adaptively.

This paper focuses on the theoretical analysis of the re-
configurable adaptive antenna array scheme. In particular, we
solve the problem of determining the number K of selected
antennas with the aim of getting the best compromise between
the performance and the cost. To this end, the spatial correla-
tion coefficient (SCC), which characterises the spatial separa-
tion between the desired signal and interference is introduced
and the lower bound of the optimal SCC is formulated us-
ing two convex relaxation methods. Since the detection per-
formance of GNSS receivers is closely related to the output
signal to interference plus noise ratio (SINRout), we derive
in closed form the relationship between the SINRout of the
adaptive array processor and the SCC. This formula reveals
that the SINRout is non-linear in the number K of selected
antennas as the optimal SCC also depends on K. The trade-
off curve of the SINRout and the computational cost with
respect to K gives the most suitable value of K with the best
compromise.

The paper is organised as follows. In Section II the
parameter SCC is introduced, the relationship between the
SINRout and SCC is described as well. The lower bound
of optimal SCC is formulated with two relaxation methods in
the Section III. In Section IV a set of representative numerical
results are reported and discussed. Finally, some conclusions
are drawn in Section V.

2. SPATIAL CORRELATION COEFFICIENT

In addition to Doppler separation, the spatial dimension of
antenna array [6, 2] plays a vital part in quantifying the effect
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of interference on the desired signal. The spatial separation
between the desired signal and interference with respect to
the array is characterized by a single parameter, the SCC [3].

Now let the directions of arrival (DOA) of the desired sig-
nal and interference be given by (θs, φs) and (θj , φj) respec-
tively. Then the u-space DOA parameters are

ui = [cos θi cosφi cos θi sinφi]
T for i = s, j (1)

where T is the transpose. The steering vectors of the desired
signal and interference are

vs = ejk0Pus , vj = ejk0Puj (2)

where the matrix P contains coordinates of antenna elements
(see Eq. (7)). Under the assumption that the noise and in-
terference are uncorrelated, their covariance matrix is given
by

Rn = σ2I + PjvjvH
j , (3)

where σ2 is the thermal noise power, Pj is the interference
power and the superscript H denotes the conjugate transpose
operation. Following the application of adaptive array filter
based on maximum signal to interference ratio, the output
SINRout becomes [7],

SINRout = PsvHs R−1
n vs, (4)

where Ps denotes the signal power. Assuming the thermal
noise power is much smaller than the interference, and using
the Sherman-Morrison-Woodbury formula, Eqs. (3) and (4)
can be combined to give

SINRout ≈
NPs

σ2
(1− |αjs|2). (5)

In this expression, the SCC, αjs is given by

αjs =
ρjs√

ρjj
√
ρss

=
ρjs

‖vj‖‖vs‖
=
ρjs
N
. (6)

where ρjs = vH
j vs, ρss = vHs vs and ρjj = vH

j vj and we have
assumed, without loss of generality, ‖vj‖ = ‖vs‖ =

√
N .

The absolute value of the SCC is bounded between zero and
one and can be interpreted as the angle between the desired
signal and interference. A smaller absolute SCC indicates that
the more separable the desired signal and interference are spa-
tially with respect to the particular array. Eq. (5) shows that
a reduction in |αjs| or increase in the number, N , of antenna
elements will improve the array performance.

3. LOWER BOUND OF OPTIMAL SCC

Consider a M × M uniform antenna array with half wave-
length inter-element spacing placed on the x-y plane as shown
in Fig. 1. The position coordinate of the (i, j)th antenna ele-
ment of this array is expressed as

pi,j = [(i− 1)d (j − 1)d] for i, j = 1...M (7)

Fig. 1. Block diagram of reconfigurable adaptive array strat-
egy: choose 8 from 4× 4 planar array

where d is the inter-element spacing. Next we stack the posi-
tion coordinate of every antenna element pi,j of the whole ar-
ray into aN×2 matrix P (whereN =M2). Thus the antenna
selection problem becomes choosing K from N antennas to
compose a subarray in order to minimize SCC value.

Let us define the correlation steering vector between the
desired signal and interference to be

vjs = ejk0P(uH
s −uH

j ) (8)

Let x be a selection vector with N elements whose value can
only be 0 (not selected) or 1 (selected), thus the SCC expres-
sion based on the selected subarray with K antenna elements
can be expressed as

αjs =
xHvjs

K
. (9)

Put W = vjsvH
js. Clearly W is Hermitian. Also, let us define

Wr = real(W). The antenna selection problem can then be
cast as a two-way partitioning model [8] as follows:

min |αjs|2 =
xHWrx
K2

(10a)

s. j. t xi(xi − 1) = 0 i = 1...N, (10b)

and xHx = K. (10c)

Due to the existence of the quadratic equality constraints in
Eq. (10b) and Eq. (10c), the primal problem above is not a
convex optimization. Thus, we resort to relaxation methods
to get the lower bound of the optimal value. There are two
kinds of commonly used relaxation methods: Lagrange Dual
Relaxation and Direct Semidefinite Programming (SDP) re-
laxation. The Lagrange Dual Relaxation utilises weak duality
and the convexity of duals to get the lower bound, while the
Direct SDP Relaxation delete the rank-one matrix constraint
to obtain a bound. Next the two methods will be formulated
respectively and the relationship between them described.
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3.1. Lagrange Dual Relaxation Method

Now proceeding with the analysis, the Lagrangian is

L(x,µ, υ) = xH(
1

K2
Wr + diag(µ) + υI)x− µHx−Kυ.

(11)
The Lagrange Dual function for the minimization ofL(x,µ, υ)
over x becomes

g(µ, υ) = inf
x
{L(x,µ, υ)} (12)

=


− 1

4µ
H( 1

K2 Wr + diag(µ) + υI)−1µ−Kυ
if 1

K2 Wr + diag(µ) + υI ≥ 0

−∞ otherwise.

Now it is evident that the Lagrange dual function in Eq. (12)
is a concave function. Using the Schur complement, we can
express Eq. (12) as a linear matrix inequality (LMI),

max λ (13)

s. j. t

[
1

K2 Wr + diag(µ) + υI − 1
2µ

− 1
2µ

H −Kυ − λ

]
� 0,

The dual problem (13) is a Semidefinite Programming
(SDP) with three variables λ, υ and µ and can be effectively
solved using the embedded Matlab software CVX [9]. There-
fore, after calculating the maximum value of gmax(µ̃, υ̃), the
lower bound of optimal SCC is

|αjs|2min ≥ gmax(µ̃, υ̃) (14)

where υ̃ and µ̃ are dual optimal solutions.

3.2. Direct SDP Relaxation Method

In addition to the above Lagrange Dual Relaxation method,
there is another commonly used direct SDP Relaxation
method that relaxes the original problem by deleting the
rank-one constraint as follows:

min
1

K2
tr(XWr) (15a)

s. j. t

[
X x
xT 1

]
≥ 0 (15b)

tr(XEi)− eHi x = 0, i = 1, 2...N ; (15c)

tr(X) = K; (15d)

where the optimization variables are X ∈ RN×N and x ∈
RN , vector ei ∈ RN is ith unit vector and matrix Ei = eieTi .
The function tr(M) is the trace of the matrix M. The rank-
one equality constraint X = xxT is replaced by an looser
constraint X ≥ xxT . Finally the inequality constraint can be
expressed as a LMI by using the Schur complement, which
gives Eq. (15b) [8].

Now we turn our attention to the relationship between the
Lagrange Dual Relaxation Eq. (13) and the Direct SDP Re-
laxation Eq. (15). According to [10], they are duals of each
other, and therefore the two bounds are identical provided that
Slater’s condition is satisfied. In our specific problem, there
is no duality gap between the pair of dual problems Eq. (13)
and Eq. (15). Next we summarize the difference between the
two relaxation methods briefly as follows:

1. Eq. (10)→ Eq. (13): dualizes N + 1 constraints, pro-
ducing a dual problem in RN+1;

2. Eq. (10)→ Eq. (15): linearises N + 1 constraints, pro-
ducing Eq. (15) with extra N2 variables.

Usually the Lagrangian Duality Relaxation method is pre-
ferred due to its simplicity.

4. SIMULATION RESULTS

In this section some simulation results are presented to vali-
date the theoretical results obtained above.

4.1. Lower Bound Of Optimal SCC Under Different Sce-
narios

In the first example we consider a 4×4 square array shown in
Fig. 1 and proceed to choose a subarray with K = 8 anten-
nas in order to minimize the SCC value. The desired signal is
assumed to be coming from azimuth and elevation φs = 0.2π
and θs = 0.1π respectively. The azimuth angle of the interfer-
ence is set to φj = 0.25π and the elevation angle, θj is varied
from θj = 0 to 0.5π. The comparison among the true mini-
mum SCC and lower bounds obtained from the two methods
is shown in the Fig. 2, which clearly demonstrates that the
calculated lower bound of the optimal SCC value coincides
with the true minimum in any scenario. Also observe that the
two lower bounds are exactly same.

In order to show the lower bound of optimal SCC rep-
resenting the best achievable performance, the SINRout of
all 8-antenna subarrays is plotted in the Fig. 3 by taking the
SINRout value calculated from the lower bound of SCC as
a reference. The DOA of the satellite signal and the azimuth
angle of the interference are fixed to the value used above and
the elevation angle of the interference is set to be 0.2π. We
can see that none of these subarrays can achieve better perfor-
mance than the upper bound calculated from lower bound of
SCC.

4.2. Lower Bound Of Optimal SCC with Different Num-
ber of Selected Antennas

In the second example we investigate the dependence of the
lower bound of optimal SCC on the number K of selected
antennas. We still use the 4 × 4 planar array and the number
K is changing from 2 to 16. The arrival direction of desired
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Fig. 2. Comparison between the true minimum SCC and
lower bounds in different scenarios

Fig. 3. SINRout of all 8-antenna subarrays and the best per-
formance obtained from lower bound of SCC

signal is set at θs = 0.2πrad, φs = 0.2πrad and the DOAs
of interference under four different scenarios are as follows:

1. the elevation angle is 0.25π, the azimuth angle is 0.25π;
2. the elevation angle is 0.25π, the azimuth angle is 0.3π;
3. the elevation angle is 0.3π, the azimuth angle is 0.3π;
4. the elevation angle is 0.35π, the azimuth angle is 0.4π.

The simulation results, shown in Fig. 4, demonstrate that the
achievable minimum SCC value is nearly zero, no matter how
many antennas are selected, when the desired signal and in-
terference are separated apart in space; whereas when the two
are close spatially, the minimum SCC is increasing with the
number of selected antennas. Mathematically we can inter-
pret the SCC expression in Eq. (10a) as a sinc function with
shape determined by the us − uj value and the number of se-

Fig. 4. Lower bound with different number of selected anten-
nas in a 4× 4 planar array

lected antennas, K. When the value of us − uj is small, the
satellite signal and interference may locate in the same lobe
due to the low resolution. Then it is very possible that in-
creasing K can move the interference from zero to non-zero
position of the sinc lobe due to the shrinkage caused by higher
resolution and thus increase the optimum SCC value.

4.3. The Relationship between SINRout and the Number
of Selected Antennas

As we have mentioned above, and is implied by Eq. (5), the
relationship between the SINRout and the number of se-
lected antennas is non-linear. The reason is that |αjs|2 also
depends on the number K like shown in Fig. 4. Now in order
to derive the final relationship between SINRout and K, we
proceed to substitute Eq. (14) into (5). Thus, SINRout after
adaptive array processing becomes

SINRout
.
=
KPs

σ2
(1− gmax(µ̃, υ̃). (16)

Eq. (16) gives the final relationship between maximum
SINRout and the number K. Here we still use the 4×4 planar
array for simulation results in Fig. 5. In this simulation, the
arrival direction of the desired signal is θs = 0.2π, φs = 0.2π
and the two DOAs of interference are θj = 0.22π, φj =
0.22π and θj = 0.4π, φj = 0.4π for the first and second
scenarios respectively. When the desired signal and interfer-
ence are separated apart in space, since the achievable mini-
mum SCC value is constant (nearly zero), the SINRout ex-
hibits a linear relationship with K as shown by the cross curve
(as the scale is in dB, doubling K results in 3dB SINR gain).
However, when the desired signal and interference are close
in space, this linear relationship does not apply any more due

4
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Fig. 5. Trade-off curve between the performance and the cost

to the increasing SCC for larger K. The SINRout curve with
circle marker flattens out as K increases to the value 8.

The most computationally expensive step for adaptive ar-
ray processing lies in the matrix inverse which needs the order
K3 complex operations [7], where K is the dimension of the
covariance matrix. Thus, to appreciate the trade-off between
the performance and the computational cost, we calculate the
normalised SINRout gain and computational cost by taking
the whole array as a reference. We can observe from Fig. 5
that using an 8-antenna subarray saves nearly 90% of com-
putational cost with almost 0.5dB degradation of SINRout

in scenario 1 and 3dB in scenario 2. Hence, both computa-
tional load and hardware cost are substantially reduced by us-
ing 8-antenna subarray instead of the whole array with small
degradation in performance when the desired signal and in-
terference are close in space.

5. CONCLUSION

In this paper, we have investigated the problem of compos-
ing a subarray for adaptive array processing in the context of
GNSS in order to get the best compromise between the per-
formance and the cost. We have proposed the Spatial Corre-
lation Coefficient parameter and derived the lower bound of
the optimal SCC using two relaxation methods. This lower
bound gives the best achievable performance of all K-antenna
subarrays. We then use this lower bound formula to obtain
the final relationship between SINRout and the number K
of selected antennas. We have shown though analysis and
simulations that the novel reconfigurable adaptive antenna ar-
ray scheme using switches to “choose K from N antennas”
can reduce both hardware and software cost, while sacrificing
very little in performance if the subarray size K is suitably
chosen. The optimal number K can be obtained through the
lower bound formula by varying different trade-off between

the performance and the cost.
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