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ABSTRACT

This work aims at searching for discriminatively learned fea-

tures that characterize an audio source and make it identifi-

able even in polyphonic audio. Probabilistic latent compo-

nent analysis (PLCA) is an effective method for decompos-

ing a polyphonic signal into individual sources using source-

specific dictionaries. This work proposes a novel discrimi-

native approach to find better PLCA dictionaries which dis-

criminate between the pitched sources more efficiently, by

learning the differences in their harmonic spectra. The exper-

imental results for source identification show promising ad-

vantages of the proposed approach over the generative PLCA

approach for source classification.

Index Terms— Probabilistic latent component analysis

(PLCA), music information retrieval, source identification.

1. INTRODUCTION

Humans can carry out the task of pitch perception and source

identification very easily, even in the case of polyphonic

music, where several musical sources play together. But

these tasks are extremely difficult to be mimicked by a ma-

chine. Monophonic instrument identification is carried out

with quite good accuracy, using the features derived from the

spectral envelope [1]. For polyphonic music, source (voice

or instrument) identification becomes difficult due to the

overlaps in the spectra of different sources playing simulta-

neously.

A convenient method to analyze overlapping spectra is

non-negative matrix factorization (NMF). It models the ob-

served spectrum as a weighted sum of spectral elements (dic-

tionary) learnt from various sound sources. NMF is extended

to probabilistic latent component analysis (PLCA) for better

semantic interpretation, leading to enhancedmodeling [2]. To

reduce the number of spectral elements due to large number of

pitches, the source filter model is used [3], such that the NMF

model stores only the source specific spectral envelopes in the

dictionary.

The problem of identifying the source associated with

each given pitch value, in a mixture of pitched sounds from

two or more sources, is addressed in this paper. The pitch

values are assumed to be given as they can be extracted using

a multi-pitch extractor [4]. The problem of source identifica-

tion has been considered by several researchers. Some works

[5] first separate the polyphonic music into separate sources

and then perform monophonic instrument identification, us-

ing features derived from the separated channels. While some

[6] attempt to identify the instrument from the mixed audio

itself. Some others [7], [8] use NMF for modelling the au-

dio signal and directly use the instrument specific gains to

determine the instrument piano-roll.

The general NMF/PLCA approachesmaximize the gener-

ative ability of the model, by minimizing the distance between

the observed spectra and the modeled spectra. For classifi-

cation problems, however, the regressional flexibility of the

model can be better utilized by using discriminative training

approaches [9]. A PLCA dictionary component does not rep-

resent the whole spectrum, but a part thereof. The discrimi-

native approach can help in learning the parts in a way such

that they represent the desired source well, but not so well

the other sources. The empirical success of the discrimina-

tive approaches over the generative approaches has been ob-

served in many frameworks. One of the most successful ap-

proaches, support vector machine [9], maximizes the margin

between the classes. Pernkopf et al. [10] have used a max-

imum margin objective function to train Bayesian networks

classifiers, but they do not consider latent variables. A dis-

criminant NMF approach has been proposed for image classi-

fication applications in [11]. For audio signals, [12] uses dis-

criminative Gaussian mixture model for single-channel audio

source separation. A discriminative NMF approach has been

proposed in [13], in the context of multi-pitch estimation. It

appends the generative objective functionwith criteria to min-

imize the distance between the dictionary weights matrix and

the ground-truth piano-roll representation. This approach has

to be extended to the situations requiring decomposition into

more than one latent variables, as in PLCA.

In this work, we aim at building a novel discriminative

approach for the PLCA framework, in the context of musical

source identification from polyphonic music, assuming that

all the true pitch values at each time frame are given, as they

can be extracted using a multi-pitch extractor. We model the

observed polyphonic spectra using source-filter based PLCA

EUSIPCO 2013 1569744355

1



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

approach. We classify the sources in the PLCA framework it-

self without the help of any post-PLCA classification scheme.

We propose a novel discriminative learning approach for the

PLCA dictionaries so as to maximize an objective function,

which is highly representative of the classification error be-

tween the different sources. Our goal is to enhance the dis-

criminative ability of the dictionaries by learning the differ-

ences between the source spectra. The proposed discrim-

inative PLCA approach is compared with the generatively

trained source-filter based PLCA. The main novel contribu-

tion of our work is to develop a discriminative framework for

training the PLCA dictionaries.

Our method of representing the audio signal in source-

filter based PLCA framework is explained in Section 2. Sec-

tion 3 describes the generative and the proposed discrimina-

tive approaches to train PLCA dictionaries, as well as the

source identification scheme. Experimental settings and the

results are discussed in Section 4.

2. SIGNAL REPRESENTATION

The polyphonic audio signal is transformed to the spec-

trogram, V (f, t) taking a 2048-point short time Fourier

transform magnitude, computed using a Hanning window

of length 56ms and hop size 10ms. Here, f, t are frequency

and time indices, respectively. Each magnitude spectrum is

boosted by 6dB per octave by multiplying the amplitude of

each frequency bin by the corresponding frequency f , so as

to enhance the spectral envelope while maintaining the linear

separability of the sources.

Basic PLCA involves factorizing the (normalized) spec-

trogram as,

Pt(f) =
∑

z

P (f |z)Pt(z). (1)

Here, P (f |z) represents the zth dictionary element and Pt(z)
represents the weight of the zth element. However, in order to

obtain a more meaningful representation (similar to [7]) and

to incorporate the source-filter model (as in [5]), we factor-

ize the spectrogram into discrete latent variables p, s, z, a, f ,

which can take Np, Ns, Nz, Na, Nf values, respectively. We

are given the pitch values at each time t, which are indexed

by p. The goal is to identify the source underlying each pitch

value. The trained source models are indexed by s, each of

which has spectral dictionaries indexed by z. Each dictionary

component contains the weights of Na (= 20 here) band pass

filters, indexed by a. This band-pass filter bank consists of

triangular magnitude response filters, with centres uniformly

distributed on Mel-frequency scale as in [5]. Time index t is

a deterministic parameter. Hence, we can modify (1) as,

Pt(f) =
∑

p,s,z,a

∫

F0

P (f |F0, a)Pt(F0|p)

Pt(p)Pt(s|p)Pt(z|p, s)P (a|z, s) dF0.

(2)

F0 represents the pitch value at time t, which is deterministic

if the source p is known, i.e., Pt(F0|p) = δ(F0 − F
p,t
0 ), δ(·)

being the Dirac delta function. Hence, we can write

∫

P (f |F0, a)Pt(F0|p)dF0 = P (f |p, F
p,t
0 , a) = Pt(f |p, a)

which simplifies (2) to:

Pt(f) =
∑

p,s,z,a

Pt(f |p, a)Pt(p)Pt(s|p)Pt(z|p, s)P (a|s, z).

(3)

Here, we have omitted F
p,t
0 for the ease of representation.

Pt(f |p, a) represents the spectrum of the output of ath fil-

ter, at time t and pitch p. We model it using the source-filter

model as,

Pt(f |p, a) =
e(f |F p,t

0 ) · h(f |a)
∑

f e(f |F p,t
0 ) · h(f |a)

. (4)

Here e(f |F0) is the excitation spectrum generated at funda-

mental frequency F0 and h(f |a) is the magnitude transfer

function of the ath triangular band pass filter. Pt(p) can be in-
terpreted as the contribution fraction of the source with pitch

p to the whole spectrum. Pt(s|p) is the probability that it is

the sth source which corresponds to the pitch p at the time

instant t. Pt(z|p, s) is the probability of the zth dictionary

component of source s, whose spectral envelope is formed by

P (a|s, z), in the form of coefficient of ath band-pass filter.

Hence, instead of modeling the whole spectrum as a lin-

ear sum of basis spectra, we model the spectral envelopes, in

the form of filter-bank coefficients, as a linear sum of basis

envelopes. These basis elements are stored in a dictionary

while training and are subsequently used for the separation

task. In general, the goal of PLCA is to estimate the model

probabilities (in (3)) from the observed spectra V (f, t).

3. THE METHOD

The source-filter model has been incorporated into NMF by

[5]. This section incorporates the source-filter model into the

PLCA framework and then proposes a novel discriminative

training method for the same.

3.1. PLCA Generative Model

The PLCA decomposes the signal into various components

according to (3). The decomposition takes place with a goal

that the model closely represents the observed spectra. This

is accomplished using Expectation Maximization (EM) algo-

rithm which minimizes the Kullback-Leibler divergence be-

tween Pt(f) and V (f, t). The likelihood

G =
∑

f,t

V (f, t) log Pt(f) (5)

2



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

is maximized by sequentially iterating the E andM steps, sub-

ject to the constraints that the probabilities sum to unity. In

the E-step, the current model probabilities are used to find the

posterior distribution of the latent variables.

Pt(p, s, z, a|f) =
Pt(f |p, a)Pt(p)Pt(s|p)Pt(z|p, s)P (a|s, z)

Pt(f)
(6)

where, Pt(f) is given by (3).
In the M-step, the model probabilities are updated, so as

to maximize the likelihood function, as

Pt(p) =

∑

f,s,z,a V (f, t)Pt(p, s, z, a|f)
∑

p

∑

f,s,z,a V (f, t)Pt(p, s, z, a|f)
(7)

Pt(s|p) =

∑

f,z,a V (f, t)Pt(p, s, z, a|f)
∑

s

∑

f,z,a V (f, t)Pt(p, s, z, a|f)
(8)

Pt(z|p, s) =

∑

f,a V (f, t)Pt(p, s, z, a|f)
∑

z

∑

f,a V (f, t)Pt(p, s, z, a|f)
(9)

P (a|s, z) =

∑

f,t,p V (f, t)Pt(p, s, z, a|f)
∑

a

∑

f,t,p V (f, t)Pt(p, s, z, a|f)
. (10)

For training the dictionary for sth source, we use its

monophonic recordings for which the pitch contour is given.

Hence, in (3) and the EM equations, Np = Ns = 1, and
Pt(p) and Pt(s|p) become fixed to unity. M-step computes

Pt(z|p, s) and P (a|s, z), out of which P (a|s, z) are stored as
the characterising dictionary of source s.

3.2. Discriminative PLCA

The proposed discriminative training of PLCA aims to maxi-

mize the soft multi-class margin based objective function,

M =
∑

t

log
Pt(s

t|p)

maxs6=st Pt(s|p)
(11)

≈
∑

t

log
Pt(s

t|p)

[
∑

s6=st Pt(s|p)η]1/η
, for η >> 1 (12)

with st being the ground truth source at time t. We train from

monophonic audio, i.e., p = 1 for all t and hence, we omit p

further in this section for the ease of representation.

The objective function is maximized using adaptive gra-

dient ascent algorithm. At each iteration, the probabilities

Pt(s), Pt(z|s) are updated through the generative approach

(Eqs. (8), (9)). Then, the dictionaries of spectral envelopes -

P (a|s, z) are updated by moving in the direction which best

enhances the objective function M .

wi+1 = wi + ǫ1
∂M

∂wi
+ ǫ2(w

i − wi−1) (13)

Here, wi represents the parameter values after the ith itera-

tion, and ǫ1, ǫ2 are the fixed learning rates. The derivative of

the objective function with respect to the parameters is given

as:

∂M

∂P (a|s, z)
=
∑

t,f

Vfts
Pt(f |a)Pt(s)Pt(z|s)

Pt(f)
. (14)

Here,

Vfts = V (f, t) ×
(

V t
s

Pt(s)
−

∑

s′,z′,a′ V t
s′Pt(f |a

′)Pt(z
′|s′)P (a′|s′, z′)

Pt(f)

)

and, V t
s =

{

1, for s = st,
−(Pt(s|p))η

P

s 6=st(Pt(s|p)η) , otherwise.

To keep the non-negativity and sum-to-unity constraints for

probability values, we re-parametrize the parameters as

P (a|s, z) =
exp(β(a|s, z))

∑

a′ exp(β(a′|s, z))
. (15)

Hence,

∂M

∂β(a|s, z)
=P (a|s, z)

[

∂M

∂P (a|s, z)
−
∑

a′

P (a′|s, z)
∂M

∂P (a′|s, z)

]

is used to learn the parameters β(a|s, z) using (13), which are
further used to estimate the dictionary components P (a|s, z)
using (15). The dictionary components learnt in this way tend

to discriminate better between the sources by learning the dif-

ferentiating features.

On comparing the numerator of the generative update of

P (a|s, z) (Eq. (10)) with the derivative of the discriminative

objective function w.r.t the same (Eq. (14)), we find that the

V (f, t) in the former is replaced with Vfts in the latter. On

analyzing the term Vfts, we find that for s = st, it is mostly

similar to positively scaled V (f, t), but for s 6= st, it is similar

to a negatively scaled version of the same. Fig. 1 pictorially

represents the same. This negative contribution of V (f, t) to
the incorrect classes enhances the classification margin.

3.3. Source Identification

The goal of this stage is to identify the sources in the given

audio mixture, corresponding to the given pitch values. This

task is carried out by first decomposing the given spectrogram

with the help of trained dictionary components P (a|s, z) for
each source. The decomposition is carried out using EM al-

gorithm described in subsection 3.1, while keeping P (a|s, z)
fixed to the trained values.

The source identification is carried out frame-by-frame

without considering the streaming rules, which are supposed

to further enhance the accuracy. Temporal evolutions also

handle the pitch overlaps more effectively [14]. Further, the

identification is carried out in two different ways: uncon-

strained and constrained.

3
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Fig. 1. Vfts (zoomed to f ∈ [1, 800]) while training for 4

sources, for frame t where only the source st = 1 is active.

For unconstrained identification, the source correspond-

ing to pitch p is chosen using the MAP estimator,

ŝt(p) = argmax
s

{Pt(s|p)}. (16)

For constrained identification, we use the constraint that

one source corresponds to only one pitch at a time, i.e.,

ŝt(p) 6= ŝt(p
′), for p 6= p′. This obviously implies Ns ≥ Np.

We represent the source-pitch mapping with a matrix Rt,

Rt(s, p) =

{

1, ŝt(p) = s

0, otherwise

constrained to,

∑

p

Rt(s, p) ≤ 1, ∀s.

Rt can be seen to be formed by row switching operations on

an Ns × Np matrix which has all diagonal elements as unity

and others as zero. Hence,

Rt = arg max
Rt

{
∑

i

∑

j

Pt(si|pj)Rt(i, j)}. (17)

4. EXPERIMENTS

The proposed discriminative training algorithm (Subsec-

tion 3.2) is compared with the generative training algorithm

(Subsection 3.1). Notably, the training algorithms are dif-

ferent, but same identification algorithm is used for both the

approaches. The generative model used in this work is sim-

ilar to the one proposed in [2], with the source-filter model

as in [5], and source identification using the model weights

Table 1. Classification Accuracies (standard deviations), in

%, for Np = 4

Algorithm Unconstrained Constrained

G-PLCA 43.0 (5) 48.4 (7)

D-PLCA 43.1 (3) 47.9 (6)

DF-PLCA 41.7 (3) 48.1 (7)

A-PLCA 43.7 (5) 46.5 (8)

Table 2. Classification Accuracies (standard deviations), in

%, with G-PLCA and D-PLCA
Unconstrained Constrained

Np G-PLCA D-PLCA G-PLCA D-PLCA

2 65.8 (9) 71.5 (7) 69.0 (9) 74.4 (8)

3 48.7 (7) 50.3 (6) 52.1 (8) 53.6 (7)

4 43.0 (5) 43.6 (4) 48.4 (7) 49.0 (7)

directly, as in [7]. The dataset consists of singer voices

from the publicly available MIR-1k dataset1, along with their

pitch values. We used the voices from 4 different singers (2

males and 2 females) and added their waveforms to produce

the polyphonic mixtures. Although this random mixing of

sounds produces musically non-meaningful polyphonic au-

dio, the evaluations over such audio are acceptable indicators

of performance [5]. We used 10 audio files, each around 8s

in duration, from each singer.

Several versions of discriminative PLCA were imple-

mented. The one with all dictionary components trained by

maximizing the margin is denoted as D-PLCA. This version

models the differences in the sources, but the spectral parts

which are common among two or more sources may remain

uncaptured. Hence, we tried another variant (DF-PLCA)

of it, which first learns the discriminative components and

then learns some filler components using generative learning.

These filler components tend to capture the common spectral

parts unmodeled by the discriminative components. Another

augmented version (A-PLCA) trains the components so as

to maximize an augmented objective function, which maxi-

mizes both the generative as well as discriminative functions

in turn, like the coordinate ascent scheme.

The training of dictionaries was performed from mono-

phonic files (unmixed), 2 for each source. The dictionary

components were initialized randomly. The parameters for

discriminative training are chosen as Nz = 10, η = 10, ǫ1 =
1, ǫ2 = 0.2. For filler dictionaries (in DF-PLCA and A-

PLCA), out ofNz components, half were taken as discrimina-

tive and the other half were taken as filler components. These

parameters were set heuristically and may be optimized to get

better perfomance.

For evaluating the performances, the classification accu-

racies are compared. The classification accuracy is calculated

1http://mirlab.org/dataset/public/MIR-1K.rar
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as the number of correctly estimated source labels to the total

number of source labels, in each time frame, over the given

pitch values. The accuracies obtained by using various algo-

rithms are shown in Table 1. These are averaged over dictio-

naries trained from several random initializations.

The average performance of the discriminative PLCA is

comparable to that of the generative one. Notably, the objec-

tive function associated with D-PLCA is non-convex, giving

rise to local maxima. Hence, the initialization point is impor-

tant in determining the classification performance. For this

purpose we created a development set for training and tried

several initializations of P (a|s, z). One such instance of dic-

tionaries giving good performance over the development set is

used to perform classification over the test set for various or-

ders of polyphony (Np) and the obtained results are reported

in Table 2. The improvement due to discriminative approach

is more for lower order polyphonies and it reduces with in-

creasing Np. The better classification accuracies of D-PLCA

as compared to those of G-PLCA shows that the discrimina-

tive approach has the capability to enhance the classification

accuracies.

5. CONCLUSION & FUTUREWORK

In this paper, we have presented a novel discriminative learn-

ing approach for the probabilistic latent component analysis

framework for source identification, maximizing the margin

between the source classes. The simulation results show im-

provement in the classification ability of the discriminative

PLCA over that of the generative PLCA for some good initial-

ization points, and for a general initialization point, both the

approaches show similar classification performances. This

shows that the proposed scheme has the capability to improve

the classification ability. We may take help of genetic algo-

rithms for determining the good initialization points. The use

of more sophisticated schemes for non-convex optimization

may also improve the performance, as the gradient ascent

method used in this work is highly susceptible to be stuck

in local maxima. The experiments have been performed for

vocal sources, which have a larger variation in timbre due to

various vowels as compared to instruments, but the approach

can be used for instrument identification as well.
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