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AN ADAPTIVE AND EFFICIENT SPATIAL FILTER FOR EVENT-RELATED POTENTIALS

Foad Ghaderi, Sirko Straube

Robotics Group, University of Bremen, Bremen, Germany

ABSTRACT

A major problem in designing brain computer interface
(BCI) systems is the variations of data during long sessions,
and also from session to session and subject to subject. This
demands extensive training sessions to maintain the over-
all performance of the systems. As an alternative, here we
propose an adaptive version of the πSF method. Taking
advantage of simple structure, high performance, and low
computational complexity of the algorithm, an extension is
developed that can adapt the trained transformation to the
new instances. Experimental results confirm that the adap-
tive method (aπSF) outperforms the non-adaptive versions
of πSF and the xDAWN method in an inter-subject train-test
schema.

Index Terms— adaptivity, event-related potentials, peri-
odic spatial filter, single-trial ERP detection.

1. INTRODUCTION

The analysis of event-related potentials (ERPs) in the elec-
troencephalogram (EEG) recordings has a long standing his-
tory in the study of human perceptual, cognitive and motor
functions. The classical method for eliminating noise in ERPs
is to average EEG windows of experimental repetitions. How-
ever, there are lots of applications, e.g., BCI systems, which
rely on single trial detection of ERPs [1, 2].

Spatial filters are a kind of pre-processing methods that
transform EEG data to a low-dimensional subspace with high
signal-to-noise ratios. Based on the requirements of differ-
ent applications, specific conditions are optimized by differ-
ent spatial filters. The common spatial patterns (CSP), e.g.,
maximizes the temporal variance of one class while minimiz-
ing the temporal variance of the other [3]. The CSP method
has been successfully used to improve classification perfor-
mance in motor imagery tasks [4, 5].

Other spatial filters are specifically designed for ERPs,
e.g., the methods in [6–9]. The proposed method in [6] max-
imizes the sum of the squared distances of the components
of the mean feature vectors. The xDAWN method [7], max-
imizes the signal (ERPs) to signal plus noise (ongoing EEG,

This work was supported by the German Bundesministerium für
Wirtschaft und Technologie (BMWi, grant FKZ 50 RA 1012 and grant FKZ
50 RA 1011).

artifacts and measurement interferences) ratio. Comparative
studies reported in [7, 10], confirm the outstanding perfor-
mance of the method. In [8], tensor decomposition is used to
improve the features and reduce dimensions of the data. Re-
cently, periodic spatial filter (πSF) method is proposed in [9].
The method is simple and efficient and is based on enhanc-
ing the periodic structure of the data created by concatenating
ERP windows of the same type.

A big challenge in developing BCI systems is to reduce
the sensitivity of the system to the non-stationarities of the
data. ERP waveforms may change from subject to subject,
or even from session to session for the same subject. Other
parameters e.g., fatigue and electrode resistance changes can
also alter the properties of the signals of interest. Compen-
sating the non-stationarities in the EEG data is an essential
step towards a robust, high performance BCI system. Further-
more, using such an adapting system would be more comfort-
able for subjects, since the system can be trained incremen-
tally and long training sessions are avoided. This challenge
has been tackled by adapting different modules of BCI sys-
tems. Researchers have used adaptive versions of classifiers,
e.g., LDA [11–13], QDA [12, 14], SVM [15, 16] to improve
the performance of the BCI systems. The problem of un-
supervised adaptation of the classifiers in BCI systems has
been addressed in [17–19]. As an alternative adaptation ap-
proach, [20–22] focus on adapting the CSP method during
motor imagery tasks.

In this paper, we propose a variation of the πSF method,
the adaptive πSF method (aπSF), which is designed for ERPs
and has the key advantage of having high performance and at
the same time being computationally efficient. The adapta-
tion is performed when the true class label is known in the
application (usually with some delay). It follows that for each
new ERP instance, the previously trained πSF transformation
is used and upon arrival of the true label the transformation
matrix is updated and used for forthcoming instances.

In spite of lower computational complexity of πSF, ex-
perimental results presented here show that the performance
of this method is promising. Further we show that aπSF out-
performs the non-adaptive version in a spatial filter transfer
scenario, in which the trained model is tested using data from
a novel subject.

The paper is structured as follows. In the next section, first
a brief overview of adaptive generalized eigenvalue decom-
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position and πSF method is presented and then the proposed
adaptive spatial filter is addressed. Data description, experi-
ments, and the results are introduced in section 3. Concluding
discussions are presented in the last section.

2. PROBLEM FORMULATION

The proposed method is formulated by iteratively estimating
the minimizer of a cost function using generalized eigenvalue
decomposition (GEVD) of two square matrices. GEVD, as
described in sequel, is a powerful statistical tool used in dif-
ferent science and engineering fields.

2.1. Adaptive generalized eigenvalue decomposition

GEVD of two square matrices A and B consists of solving the
equation AW = BWΛ, where W and the diagonal matrix Λ
are respectively called generalized eigenvector and general-
ized eigenvalue matrices [23]. Solution to GEVD problem
can simultaneously diagonalize the matrices A and B, i.e.,
WTAW = Λ and WTBW = I, where [.]T denotes trans-
pose operator. If A and B are symmetric and positive definite,
the generalized eigenvalues are real and positive [23].

Online solution of the GEVD problem is an essential re-
quirement in applications that true estimations of A and B are
not available in advance or they may change over time.

In [24] the solution is proposed as follows. Assume that
w(k−1) is the estimate of an eigenvector at time index k−1.
Then w(k) is estimated as:

w(k) =
w(k − 1)B(k)w(k − 1)

w(k − 1)A(k)w(k − 1)
B−1(k − 1)A(k)w(k − 1)

(1)
This algorithm only updates the principal generalized eigen-
vector, w1(k). In order to update the other components, one
has to deflate w1(k) to obtain Â(k) and B̂(k) as

Â(k) =

[
I− A(k)w1(k)wT1 (k)

wT1 (k)A(k)w1(k)

]
A(k), B̂(k) = B(k) (2)

It can be shown that Â(k)w1(k) = 0 and Â(k)wi(k) =
λiB(k)wi(k), i > 1. Therefore, to update wi(k) first wi−1(k)
has to be deflated using (2) to obtain new Â(k), then A(k) in
(1) must be substituted with Â(k).

2.2. Periodic spatial filter

It is assumed that the EEG data have been recorded using n
electrodes at m sample points and each ERP response lasts
for me samples, the system can be formulated as follows:

x(t) = Ed(t) + r(t) (3)

where x(t) is the n dimensional measurement vector, E is the
n × me ERP response, r(t) is the n dimensional noise vec-
tor (including ongoing EEG), and d(t) is an me dimensional

vector indicating the time point of the relevant ERPs in the
EEG recording. If tl is the onset of the lth ERP stimulus and
tl ≤ t < tl +me, then

dj(t) =

{
1 if j = t− tl + 1

0 else
. (4)

Constructing the matrix D = [d(1),d(2), ...,d(m)] for
each ERP class separately, the objective is to estimate ERP
response matrices, i.e. E for each class. It is worth to mention
that construction of D is always possible because the ERPs
are time locked to the stimuli and the stimulus markers are
stored with EEG data. Assuming X = [x(1), x(2), ..., x(m)],
the least square solution to the problem could be estimated
from Ê = argminE ||X− ED||2 which is

Ê = XDT (DDT )−1. (5)

Equation (5) always has a solution, because D is a me × m
Toeplitz matrix and hence DDT is invertible. If we construct
D for one class and D′ for the other, and (using (5)) estimate
the ERP matrices, i.e., Ê and Ê

′
, matrices X̂ = ÊD and X̂

′
=

Ê
′
D′ will contain the enhanced versions of brain responses.

Assume that there are p instances of one ERP class (ŷTi
,

for 1 ≤ i ≤ p) in X̂ and q instances of the other class (ŷSj
,

for 1 ≤ j ≤ q) in X̂
′
. We construct the matrices yT and yS

by horizontally concatenating all instances of ŷTi
and ŷSj

, re-
spectively. Ideally each row of yT and yS is a periodic signal
with the period equal to the ERP window length, τ = me.

The periodic spatial filter (πSF), proposed in [9], is based
on enhancing the periodic structure of the data by minimizing
J (w, τ) =

∑
t′ |w

T yT (t′+τ)−wT yT (t′)|2∑
t′ |wT yS(t′+τ)−wT yS(t′)|2 , where w is the spatial

filter vector. This function is further simplified to J (w, τ) =
wT AyT (τ)w
wT AyS (τ)w , where Au(τ) = E{[u(t′ + τ) − u(t′)][u(t′ +
τ) − u(t′)]T } = 2Cu(0) − (Cu(τ) + Cu(−τ)), E{.} de-
notes the expected value of the enclosed term, and Cu(τ) =
E{u(t′+τ)u(t′)T } is the covariance matrix of u ∈ {yT , yS}.
The minimizer of J (w, τ) is given by the eigenvector cor-
responding to the smallest generalized eigenvalue of AyT (τ)
and AyS (τ).

The steps of the πSF method are summarized as follows
(for more details about the method see [9]):

1. Using (4), construct matrices D and D′ for the two
classes, respectively,

2. Estimate X̂ and X̂
′
using (5): X̂ = ÊD = XDT (DDT )−1D

and X̂
′
= Ê

′
D′ = XD′T (D′D′T )−1D′,

3. Construct yT and yS by concatenating ERP instances
from X̂ and X̂

′
, respectively,

4. Calculate AyT (τ) and AyS (τ),
5. Calculate GEVD of AyT (τ) and AyS (τ),
6. The first nf eigenvectors corresponding to the smallest

eigenvalues are selected as the spatial filters.
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2.3. Adaptive periodic spatial filter

The idea behind adaptive spatial filters is to compensate the
data shifts in BCI applications. A simple case is when the sys-
tem is trained for a subject but the brain response templates
vary over long application intervals or in future sessions. A
more complicated case is when the system is trained on a pool
of data from different subjects, and the goal is to use the sys-
tem for a new subject without further training. An adaptive
system must be able to extract the data properties and update
the trained parameters.

Data shifts in the EEG data would affect the matrices Au,
u ∈ {yT , yS}. To compensate the shift effects and develop
aπSF, the spatial filer vectors have to be modified using the
test instances and the update rule of (1).

Assume that the true class label of û, the kth ERP test
instance, is availabe with some delay and u(k-1) represents
either yT or yS at the (k − 1)th adaptation step. That means,
depending on the class label of û, u(k) will be either u(k) =
[u(k − 1) û] or u(k) = [u(k − 1)].

In the former case, Cu(k)(τ) can be written as Cu(k)(τ) =
1

M+p [0 u(k − 1) û][u(k − 1) û 0]T , where M and τ are the
lengths of u(k − 1) and û, respectively, and 0 is a matrix of
the same length of û with all zero entries.

We further assume that u(k − 1) = [u0(k − 1) u1(k −
1) u2(k−1)] where u0(k−1) and u2(k−1), are respectively
the first and the last ERP instances in u(k − 1). Cu(k)(τ) is
then simplified as:

Cu(k)(τ) =
1

M + τ
[u0(k − 1)u1(k − 1)T+

u1(k − 1)u2(k − 1)T + u2(k − 1)ûT ]

=
1

M + τ
[MCu(k−1)(τ) + u2(k − 1)ûT ]

=
M

M + τ
Cu(k−1)(τ) +

τ

M + τ

u2(k − 1)ûT

τ

=(1− α)Cu(k−1)(τ) + α
u2(k − 1)ûT

τ

(6)

where 0 < α = τ
M+τ < 1 is the update coefficient. Consid-

ering the values of M and τ , the typical values of α have to
be small. Similarly one can conclude that

Cu(k)(0) = (1− α)Cu(k−1)(0) + α
ûûT

τ
(7)

To be able to initialize the adaptive algorithm properly we
need to know AyT , AyS from the training phase. Since both
the matrices are n × n matrices, it is always possible to save
them along with the trained spatial fitlers. On the other hand,
u2(k − 1) is also required to update Cu(k)(τ). It is possi-
ble to randomly set the value of this matrix for the first itera-
tion of the adaptation. Furthermore, heuristically selecting the
proper values for update coefficients α can resolve the need
of prior knowledge about M .

The proposed adaptive periodic spatial filter method is
summarized as follows:

1. Initialize α with small values (close to zero),
2. Randomly initialize u2(k − 1) for each ERP type,
3. For each new sample, û:

(a) Based on the class label of û, update AyT (τ) or
AyS (τ) using (6) and (7),

(b) Set A = AyT , B = AyS . Update wi using (1),
(c) Deflate wi using (2),
(d) Normalize wi and repeat from (b) ∀i, i ≤ nf ,
(e) Substitute u2(k − 1) with û.

In order to avoid computational costs of calculating A−1yS
in (1), one can use Sheman-Morrison-Woodbury matrix in-
version lemma as described in [24].

3. EXPERIMENTS

Performances reported here were evaluated by offline classi-
fication of data containing an oddball scenario, i.e. the ERP
classes can be divided into an infrequent target and frequent
non-target conditions. The experiments were conducted in an
inter-subject schema. Experimental setup and recording are
described in detail elsewhere [9, 25].

3.1. Data & Classification

The data were recorded from six male subjects (64 electrodes,
10-20 system) participating in two experimental sessions with
five runs each. The data from one subject had to be excluded
from the analysis due to high noise levels. Each dataset of a
single run contains 720 non-target and 120 target instances.
The recorded signals were further band-pass filtered between
0.1 Hz and 7 Hz and down-sampled to 100 Hz. Each ERP
instance was cut between 0 to 1000 ms after stimulus onset.

In this study, ERP instances were classified using a lin-
ear discriminant analysis (LDA) and performance was deter-
mined by training spatial filter and LDA on all datasets from 4
subjects and testing on the 10 datasets of the remaining sub-
ject, while adapting the spatial filter. Feature vectors were
generated from the slopes of lines fitted to overlapping win-
dows cut from the retained channels of the spatial filter (each
line fitted to a 400 ms segment with 120 ms overlap) and then
passed to the classifier.

3.2. Results

The performances of the aπSF method for different numbers
of retained channels are compared to those of the πSF and
xDAWN algorithms in Fig. 1. Reported is the balanced ac-
curacy (BA), which is the average of true positive and true
negative rates and therefore unaffected by unbalanced class
distributions. The performance values in Fig. 1 are reported

3
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Fig. 1: Classification performances (mean and standard deviations
for all subjects) obtained when using xDAWN, πSF and, aπSF re-
spectively. The results are shown for different numbers of channels
retained from these filters. Results of a statistical analysis (see text)
are indicated (*=p<0.05; ns=p>0.05).

as means and standard deviations over the whole data set
(5 subjects × 2 sessions). The session-wise performance was
estimated as the average over all five runs. The differences
obtained were compared using two-tailed t-tests for each
number of retained channels, respectively. By this, we com-
pared pairwise differences between the applied spatial filter
methods. Reported p-values underwent Bonferroni correction
(n=3) compensating for multiple testing. For all numbers of
retained channels (rc), the use of aπSF led to a significant
improvement in classification performance compared to the
two static spatial filters, xDAWN (rc4: p < 0.05, all others:
p < 0.01) and πSF (all: p < 0.01). By contrast, the xDAWN
and the πSF method alone did not yield different performance
levels (all: p > 0.5) as has been reported elsewhere [9].

To illustrate how aπSF improves performances for dif-
ferent subjects, the results for single subjects are depicted in
Fig. 2, exemplarily for eight retained channels (i.e., detailed
view of the corresponding results presented in Fig. 1). Al-
though the statistical tests confirm that aπSF improves the
performance on average, the results in Fig. 2 demonstrates
that the actual amount of this improvement is varying from
subject to subject.

For all results presented in Fig. 1 and Fig. 2 we used the
same update coefficient, i.e., α = 10−4. This parameter is
controlling the weight of the new incoming instance (compare
Eq. 6 and 7). The effect of the choice of α on the obtained
performance, again exemplarily for eight retained channels,
is illustrated in Fig. 3. For big α values, small weights are
assigned to Cu(k−1), so that the spatial filter will be trained
mostly based on the new coming samples. Therefore, the per-
formance is dropping for large α values. Smaller α values
make the spatial filter more conservative and if α approaches
zero, the algorithm will converge to the non-adaptive πSF.

Fig. 2: Single subject performances (mean and standard deviation)
obtained for aπSF and πSF (eight retained channels).

Fig. 3: Effect of α values on classification performance (eight re-
tained channels). The solid black line shows the mean over results
of all subjects and the shaded grey area indicates the corresponding
standard deviation.

4. CONCLUDING DISCUSSIONS

The proposed method was evaluated in an inter-subject train-
test schema. Our results confirm the notion that the use of
adaptive algorithms for the processing of EEG data is ben-
eficial to obtain better classification performances. The use
of aπSF consistently outperforms the use of the non-adaptive
version and the well established xDAWN method (compare
Fig. 1). Besides the improve in performance, the usage of
adaptive algorithms bears the big advantage that extra train-
ing sessions are less required for setting up a BCI system.
Furthermore, it has been outlined that the choice of the update
parameter α influences the performance outcome and controls
the adaptivity characteristics of aπSF with respect to new in-
coming samples (Fig. 3).

Within aπSF the adaptive generalized eigenvalue decom-
position is used to update the spatial filter vectors upon arrival
of new ERP instances. The method is a fixed point algorithm

4
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which is faster than gradient based approaches.
Adaptive classifiers can further improve the performance

of BCI systems. A system with simultaneously adapting spa-
tial filter and classifier will be the follow up of this work.
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