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ABSTRACT

This paper proposes a real-time acoustic channel equaliza-
tion method with an adaptive multi-channel linear prediction
technique. The proposed method takes a theoretically per-
fect channel equalization algorithm that also solves the prob-
lems existed in the actual implementation stage. The linear-
predictive multi-input equalization (LIME) is an appropriate
attempt for performing blind dereverberation with assuring
the theoretical basis, however, it requires a huge computa-
tional cost for calculating large dimension of covariance ma-
trix and its inversion. The proposed equalizer is formed as the
multichannel linear prediction (MLP) oriented structure with
a new formula that is optimized to time-varying acoustical
room environments. Experimental results under both artifi-
cially generated and real room environments with a conversa-
tional speech confirm the superiority of the proposed method.

Index Terms— Dereverberation, multichannel linear pre-
diction, real time equalization, adaptive filter.

1. INTRODUCTION

In typical speech communication systems such as hands-free
telephones and voice-controlled systems, the characteristic of
received speech signal is changed by room reverberation and
background noise. A number of recent literatures on dere-
verberation techniques can be divided into two classes: rever-
beration reduction or perfect cancellation [1]. Methods in the
former class are usually designed by single channel spectral
enhancement schemes that utilize the statistical characteristic
of RIR, e.g. reverberation time (RT60). Specific algorithms
vary depending on the way of estimating (late) reverberation
power [1, 2]. It is advantageous that they can work online
by employing a short time Fourier transform. The other class
derives an inverse filter to multichannel RIRs [3, 4, 5, 6, 7].
Several literatures have tried to show a possibility of adopting
single-channel equalization techniques, however, there are no
clear explanations on how to overcome the minimum phase
problem [6]. From a theoretical perspective point of view, re-
verberation can be completely removed using a multiple mi-
crophone based technique, i.e. the multiple-input/output in-
verse theorem (MINT), if it meets specific conditions includ-

ing:the co-primeness between channels and a sufficient filter
length [7]. In practice, however, the MINT is computationally
expensive and should be combined with a blind system iden-
tification (BSI) method which is an another challenging task.
It is very sensitive to even small errors of channel impulse re-
sponses which is unavailable in the estimation process. The
blind dereverberation approach assumes that the target sig-
nal be independent and identically distributed (i.i.d), but this
hypothesis does not hold for speech-like signals [5]. Recent
studies use multichannel linear prediction (MLP) techniques
to remove reverberant components for the primary input sig-
nal [3, 4, 5, 8]. An over-whitening problem should be also
considered in speech-like signals. There are several attempts
to manage the over-whitening problem using a delayed lin-
ear prediction (DLP) [8], pre-whitening/post-compensation
method [3], and the LIME algorithm [5].

The LIME algorithm provides a theoretically perfect
equalization filter that is similar to the MINT solution, and
also supports a blind method for colored target signals. The
algorithm consists of two stages. In the first stage, the speech
residual is estimated by MLP filters which are derived by the
minimum mean squared error (MMSE) criterion. Therefore,
MLP filters can be considered as a specific form of the MINT
solution that can be applied to the situation where the target
signal characteristic varies. In the second stage, the LIME
algorithm estimates average speech characteristic to compen-
sate for the whitening effect of the prediction filter. However,
this approach requires a huge computational cost for calcu-
lating large covariance matrix and its inversion. It is also not
suitable for a practical system since the RIRs may change
during the observation interval. In addition, the equalization
fails if the covariance matrix inversion is not accurate [9].

In this paper, we verify that the process of the conven-
tional LIME structure can be reformulated by taking an adap-
tive way, which is suitable for time varying situations. Prin-
ciple drawbacks caused by generating a large covariance ma-
trix is avoidable and various filter estimation techniques can
be adopted in the proposed method. Reliable adaptive filters
(ADFs) are first tested in artificially generated environments
to verify the feasibility of the proposed equalization method.
Finally, the dereverberation result to conversational speech in
a real room environment is presented.
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2. LINEAR-PREDICTIVE MULTI-INPUT
EQUALIZATION

2.1. Basic assumptions

The room impulse responses (RIRs) between the source and i-
th microphone can be modeled by Lh-th order time-invariant
polynomials. Using the matrix formulation, the captured sig-
nal vector of length Lw can be written as

xi(n) = HT
i s(n), i = 1, ..., P , (1)

where Hi is an (Lh + Lw − 1)× Lw convolution matrix ex-
pressed in [5] and P is the number of channels. The min-
imum length of the signal vector is low-bounded to Lw ≥
(Lh − 1) / (P − 1) to obtain the unique LIME solution in ac-
cordance with the assumption that RIRs do not share common
zeros [5].

A single target signal, s(n), is assumed to be generated by
an Llp-th order auto regressive (AR) process as follows;

s(n) = CT s(n− 1) + e(n), (2)

where C is the transpose of the Llp × Llp Frobenius com-
panion matrix whose first column consists of AR coeffi-
cients, s(n) = [s(n), ...., s(n− Llp + 1)]

T and e(n) =

[e(n), 0, ..., 0]
T [5]. A matrix-vector representation given

in (2) is advantageous while deriving optimal filters for the
LIME algorithm. Details of the LIME algorithm is faithfully
described in the next subsection using two signal models
given in (1) and (2).

2.2. LIME algorithm

The LIME algorithm consists of two principle filters: mul-
tichannel linear prediction (MLP) filter and speech synthe-
sis filter 1/a(z). The prediction residual, ew(n), for the first
channel input as a primary signal is given as

ew(n) = x1(n)− xT (n− 1)w, (3)

where w =
[
wT

1 , · · · wT
P

]T
is an MLP filter and x(n−

1) is a PLw×1 reference signal vector with a single tap delay.
Using (1) and (2), the optimal MLP filter that minimizes the
mean squared error of the residual signal, (3), is expressed as
[5]

w =
(
HTRs(n−1)s(n−1)H

)+
HTRs(n−1)s(n)h1

= HT
(
HHT

)−1
Ch1,

(4)

where the covariance matrix Rs(n)s(n) = E
{
s(n)sT (n)

}
,

H = [H1, ...,HP ] and A+ represents the Moore-Penrose
generalized inverse matrix A. The covariance matrix can be
canceled out in (4) if we assume a positive definite matrix. By
replacing the column vector h1 with the matrix H in (4), we
can define the matrix Q as

Q = HT
(
HHT

)−1
CH, (5)

then the first column of Q becomes the optimal MLP filter w.
The MLP process generates whitened residual signal

ew(n) by removing not only reverberant components but also
its own speech characteristic. This undesired over-whitening
effect should be compensated by a speech synthesis filter,
1/a(z). Note that the coefficients of polynomial a(z) are
equivalent to the characteristic polynomial of the companion
matrix C [10]. Let us consider the nonzero eigenvalues of
matrix Q, then the following equality is satisfied

λ (Q) = λ
(
HT
(
HHT

)−1
CH

)
= λ (C) , (6)

where λ (Q) represents coefficients of characteristic polyno-
mial.

In conclusion, two principle filters of the LIME algorithm,
MLP and 1/a(z), are completely reconstructed by the matrix
Q. In a practical system, however, a prior knowledge of ei-
ther RIR or the target speech signal are blind. Thus, an ap-
proximation of the matrix Q which can be calculated with the
signals received at the microphones can be formulated using
(1) and (4);

Q̂ = R+
x(n−1)x(n−1)Rx(n−1)x(n). (7)

Here, the covariance matrix is estimated by time-averaging;

Rx(n)x(n) =
1

N

N−1∑
n=0

x(n)x(n)
T
. (8)

3. THE PROPOSED W-ORIENTED ADAPTIVE LIME

To solve the Eq. (7) and (8) a huge computation of construct-
ing large covariance matrix and solving its pseudo-inversion
is needed. It makes the LIME algorithm be impractical de-
spite its theoretically perfect equalization performance. Note
that the solution of the filter that is completely based on the
Q matrix can not provide a feasible solution, especially when
the RIR term is varied. In this section, we propose a novel
MLP filter-oriented scheme that can simplify the calculation
process of constructing Q matrix. Since the proposed method
takes a multichannel adaptive filtering approach, it can be also
applied to the circumstance of channel variation. Note that,
we assume a dual-microphone system in the following sub-
sections for the simplicity of equations.

3.1. Q matrix analysis

Let us consider last multiplication of two matrices in (5), CH,
with decomposing C into sum of two simple matrices as fol-
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lows;

CH =




a1 0 · · · 0

a2 0
. . . 0

...
...

. . . 0
aLlp

0 · · · 0

+


0 1 · · · 0

0 0
. . . 0

...
...

. . . 1
0 0 · · · 0


H

=
(
A+ Ĩ

)
H.

(9)
Then, the first and the second matrix multiplications can be
simplified as follows;

AH =
[
ah1(0) 0mtx ah2(0) 0mtx

]
, (10)

ĨH =

[
h1(1) H̃1 h2(1) H̃2

0 0 · · · 0

]
, (11)

where a =
[
a1, ..., aLlp

]T
, hi(0) is the first component of

hi and 0mtx is an Llp × (Lw − 1) zero matrix. In (11), the
square matrix Ĩ operates as throwing out the first row of the
latter matrix and filling all the last row with zeros. There-
fore, hi(1) becomes Llp − 1 vector which is equivalent to the
((i− 1)×Lw +1) -th column of the matrix H except for the
first row component. The (Llp − 1) × (Lw − 1) matrix H̃i

is equivalent to the convolution matrix of i-th channel, Hi,
excluding the last column and row. Sequentially, (9) can be
reformulated as

CH =

[
ah1(0)
+h1(1)

0mtx
ah2(0)
+h2(1)

0mtx

]

+

 0vec H̃(Llp−1)×(Llp−1)

0 0T
vec

 ,

(12)

where 0vec is an (Llp − 1)× 1 zero vector and H̃ becomes

H̃ =
[
H̃1;0vec; H̃2

]
. Note that, H and H̃ are pretty much

similar except only for the fact that Lw-th column is filled
with zero components and the last row and the last column
are omitted. Finally, the ideal Q in the LIME algorithm, (5),
can be expressed in a new way as

Qw =
[
w(1) 0mtx w(2) 0mtx

]
+

 0vec Î(Llp−1)×(Llp−1)

0T
vec

 ,
(13)

where w(i) = HT
(
HHT

)−1
Chi is the ideal MLP filter

which takes the current input of i-th channel as a primary
signal. Second term of (13) is produced by multiplying
HT
(
HHT

)−1 with the second term of (12) and obviously
Î becomes an approximation of the identity matrix. Figure

1 depicts the ideal Q, (5), and its approximation, (7) as a
squared matrix form. We confirm that the matrix is composed
of two MLP filter vectors and diagonal entries in both cases
that the suggested Qw is sufficient to substitute the ideal
matrix.
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Fig. 1. Squared components of the matrix Q in log-scale [dB]
when Lh = 50 and P = 2, (a) ideal Q (b) approximated Q̂.

3.2. Adaptive LIME method
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Fig. 2. Block diagram of the proposed w-oriented real time
adaptive equalization method (P = 2 case).

From the above analysis, we showed that the estimation
of MLP filters for each channel should be taken prior to the
estimation of Q matrix. The proposed method requires very
low complexity and can be applied to time varying conditions
using an online processing. Figure 2 depicts the schematic
diagram of the proposed w-oriented real time adaptive equal-
ization method. At first, the prediction filters, w(i) is esti-
mated by utilizing an adaptive filter with an MMSE criterion
as follows;

w(i) = arg min
w

(i)
1 ,w

(i)
2

E

{∣∣∣e(i)(n)∣∣∣2} , i = 1, 2. (14)

We can further enhance the residual signal by averaging MLP
outputs because the prediction error has a characteristic of
white noise. Finally, the speech compensation filter, 1/â(z),
is derived by the characteristic polynomial of Qw at every T

3
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intervals. Last but not least, assumptions that there are no
time difference of arrival (TDOA) between channels should
be satisfied to estimate MLP filters in the proposed method. A
number of TDOA compensation techniques can be presented,
however, we assume that the target speaker is located in the
front direction in this paper.

4. EXPERIMENTAL RESULTS

A number of reliable ADFs are introduced to implement MLP
such as normalized least mean square (NLMS), variable step
size LMS (VS-LMS), steepest descent (SD), conjugate gradi-
ent (CG) and recursive least square (RLS) methods [11, 12].
The segmental prediction-to-distortion ratio (PDR), (15), is
employed to evaluate the prediction performance.

PDR = 10log10

( ∑
|e(n)|2∑

|e(n)− ê(n)|2

)
[dB]. (15)

The accuracy of speech synthesis filter is evaluated by the
log-spectral distance (LSD) between the ideal and estimated
coefficients. We consider both a synthesized RIRs (Polack’s
model) and real RIR measured in a room.

4.1. Performance evaluation for ADF-LIME

At first, the performance of MLP and â(z) is verified in a
controlled environment. The target signals are generated by a
time-invariant AR process with an input of white noise. The
model order of the AR process is given by Llp = Lh+Lw−1
and it is extracted from speech signal. The RIRs are gener-
ated by the Polack’s model and truncated them to 100 taps
corresponding to a short duration of 12.5ms. A dual-channel
system is implemented (P = 2) and the length of MLP filter
is set to minimum, Lh − 1 [see (1)]. The forgetting factor, β,
in different ADF methods (VS-LMS, SD, CG, RLS) are set to
0.9999 to equalize the observation interval for past input sig-
nals. The best step-sizes which show the fastest convergence
with ensuring the stability of ADFs are determined by lots of
iterative simulations in both fixed step-size (NLMS, SD) and
variable step-size (VS-LMS, CG) cases.

Figure 3 shows the segmental PDR of MLP filters using
the proposed ADFs and the LIME schemes with Monte Carlo
experiments. In this simulation, RIR had been changed at 4s
point by hi = αhi+(1−α)hi,new where the smoothing fac-
tor is set to 0.9. The covariance matrix in the LIME method is
calculated in different ways such that LIME1 utilizes whole
signal and LIME2, the ideal case, uses different covariance
matrix after RIR is changed. Among the ADFs, the RLS
method shows the best prediction performance, especially
it is superior to the conventional LIME method (LIME1) in
both tracking capability and the accuracy of stabilized filter
perspectives. The CG method has better performance than
LIME2, however, the rest of ADFs are failed to minimize
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Fig. 3. Segmental PDR of MLP filters using the proposed
ADFs and LIME method considering RIR transition at 4.0s.

the prediction error. The reason can be found from the fact
that the eigen-value spread ratio of the input signal synthe-
sized by AR process is very high [11]. Therefore, only the
methods which are not affected by the characteristic of input
signal (RLS, CG) can successfully find the global minimum
in an adaptive way. The accuracy of estimated AR poly-
nomial â(z) is summarized in Fig.4. Not surprisingly, it
shows similar trend to the prediction performance explained
in Fig.3. Consequently, we confirm that the estimated AR
coefficients which are obtained from the proposed Qw can
exactly compensate the input signal.

NLMS VS-LMS SD CG RLS LIME1 LIME2
0

1

2

3

4

L
S
D
 [
d
B
]

NLMS VS-LMS SD CG RLS LIME1 LIME2
0

Fig. 4. LSD between ideal a(z) and estimated â(z).

4.2. Real room experiment for a conversational speech

To confirm the performance of the proposed method in a real
environment, a conversational speech is convolved with mea-
sured RIR in Aachen impulse response database (AIR-DB)
[13]. The AIR-DB is targeting a dual-channel system whose
microphone spacing is fixed to 0.17m and the RIRs are mea-
sured in various room environments for arbitrary speaker lo-
cations. Two-channel RLS-MLP with the same length of RIR
as the previous experiment are used to produce residual sig-
nals. In this case, the AR process can be considered as time-
varying, thus â(z) is updated at every T = 0.5s. The whole
process is carried out in a sample-by-sample manner not to
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(a) 

(b) 

(c) 

Fig. 5. Example result of the proposed RLS-MLP method
for a male speech in office room (speaker to microphone
distance= 3m, RT60= 0.48sec, Lh = 1000taps and P = 2)
(a) clean signal s(n) and its spectrogram (b) observed signal
x1(n) (c) output signal ŝ(n).

bring system delay. Figure 5 shows the result of the proposed
method in the office room. A conversational male speech,
length of 16s, is used and the signals in last 2.5s interval are
depicted when the ADFs are stabilized. Figure 5 (c) shows
that the reverberant components are removed, which is ver-
ified in both time and frequency domain results. There re-
main some leakage terms which are shown to be audible in
some frequency bands though. This result is occasionally
happened for a conversational speech signal because the non-
stationarity of the signal can disturb the filter adaptation. Sub-
jective tests confirm that it sounds like a low level late rever-
beration. Note that, it can be easily removed by the late re-
verberation suppression method for direct listening or by the
cepstral mean normalization (CMN) for a automatic speech
recognition (ASR) process [1][5].

5. CONCLUSION

We have presented a new adaptive scheme for the LIME
algorithm by reformulating the covariance matrix, which is
suitable for time-varying acoustic environment. Experimental
results in real room environments showed that the proposed
method successfully removed the reverberation even for con-
versational speech. Future work involves both adopting the
fast version of ADFs and improving the performance of the
adaptive multichannel prediction filter by considering the
(near-) common zeros problem between channels and back-
ground noise.
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