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ABSTRACT

In this paper we propose a novel approach to detect and track
moving entities in wide surveillance video. Considering the
wide area covered by the camera, which makes the detection
and tracking of humans, as well as the classification of their
motion a complex task and resource consuming, we adopt
a particle-based approach to highlight particles of interest
and group them based on their motion properties. A cross-
influence matrix is computed at the particle level identifying
the relevant areas of the video, and pruning static particles
and outliers. Based on the motion features of the particles
marked as interacting with their neighbors, a learning pro-
cedure based on an MLP neural network is implemented, in
order to create consistent groups, representing the moving
entities to be tracked over time. The method has been tested
on two publicly available datasets with different resolutions
and motion characteristics.

Index Terms— Particle tracking, entity influence, social
interactions.

1. INTRODUCTION

Understanding human activities through vision-based tech-
nologies has been a challenging and attracting research area
since the beginning of the past decade [1, 2]. Thanks to the
increase in performance of detection and tracking algorithms,
the research focus has shifted towards the provisioning of a
higher level of interpretation of the visual scene, which in-
cludes the identification of semantically meaningful events,
such as, for example, role detection [3], people grouping [4],
as well as crowd assemblage and crowd flow analysis [5] to
name a few.

Rota et al. [6] propose a framework to detect social in-
teractions exploiting the so-called proxemics cues. Starting
from the relative displacement, and the speed and orientation
of the involved subjects, interactions are defined as normal
and abnormal. In [7] the authors exploit the contextual infor-
mation as a relative contribution of distances and orientations
in relation to a reference subject considered as an anchor.
This information is then processed using a Spatio-Temporal
Volume representation combined with Random Forests, to in-
fer simple individual actions. In the framework of activity
recognition, the authors in [8] propose a dual approach (top-

down and bottom-up) to classify human activities jointly ex-
ploiting multiple detectors information and higher level be-
havioral features, also based on context. In the work by Lan
et al. [9], the authors analyze the contextual information in
a sport events so as to infer individual and group behaviors
relying on the overall game situation.

However, in case the number of moving subjects in the
scene becomes dense, and the chance of incurring in severe
occlusions increases, detectors and trackers are likely to fail,
and more generic approaches that analyze the motion flow
should be exploited, as it commonly occurs in crowd motion
analysis [10]. Although in this way the notion of person is
neglected, due to the absence of an explicit detector, it is still
possible to estimate, for example, the density of people, and
the aggregation points in the monitored environment. This
turns out to be an efficient pre-processing step for any further
and more detailed analysis.

In this paper our objective is thus to propose a hybrid
method to overcome the known limitations related to detec-
tors, using a particle based approach, and inferring the pres-
ence of moving entities by observing the consistency of the
motion features of particles over time. Our approach starts
by considering each particle as a single entity, and, as such,
with its intrinsic and extrinsic characteristics. The former are
related to the motion of the particle itself, the latter refer to
the influence that each particle has over the neighboring par-
ticles. These features, modeled as a Markovian process to
preserve the time coherence, are then fed into a Multi-Layer
Perceptron (MLP) neural network, which goal is to learn the
motion properties of the particles and form coherent groups
of entities sharing similar motion properties.

The main contributions of this paper are:

• the motion information is acquired through a model
that combines the particles cross-influence and self-
influence.

• the model we propose does not rely on pre-stored tem-
plates, and only considers motion features, ensuring
fast computation also in very high resolution video;

The paper is structured as follows. In Section 2 we intro-
duce the particle based method and the cross-influence com-
putation; in Section 3 we describe the learning phase and the
grouping structure, and in Section 4 we present the exper-
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imental results obtained on the recently released high defi-
nition UCLA and BIWI datasets. Conclusions remarks are
discussed in Section 5.

Fig. 2. An example of particle initialization (top) and after
pruning (bottom).

2. PARTICLES MUTUAL INFLUENCE

As mentioned in Section 1, the first step of our method relies
on particles dynamic properties. In our model we assume that
each particle corresponds to an entity and has attractive and
repulsive forces upon other particles surrounding it. Under
this hypothesis, each particle can be classified not only on the
basis of its own motion characteristics, but also in relation to
the context, in this case provided by its neighbors.

As proposed in [11], the state of an entity c ∈ C at time t,
and defined as h(c)t can be derived using a Markovian assump-
tion, making it a direct temporal consequence of the state in
the preceding temporal observation (t − 1). The influence

among particles can be expressed by the so-called influence
matrix. The influence matrix is a row stochastic matrix of
dimension C ×C where C is the number of the particles (en-
tities) present in the given time window. In order to compute
a single value of the matrix (see Fig.1) we assume that each
particle relates with the others according to a Gaussian distri-
bution, therefore the influence of ci on cj is computed as in
Eq. (1), where d is the Euclidean distance between ci and cj .

R(ci,cj) =
1

σ
√

2π
e
d(ci(t),cj(t−1))

2σ2 (1)

As can be seen in Eq. (1), the motion information is already
comprised by the formula, distance is computed indeed be-
tween the paticle ci at time t and the particle cj at time t− 1.
Particles are then classified in two states (h), grouped (G) or
alone (A) according to the model in Eq. (2) and Eq. (3).

S
(
h
(ci)
t ⇒ G

)
= ∑

cj∈{1...C}∧cj 6=ci

R(ci,cj) × P (Gt/h
(cj)
t−1) (2)

S
(
h
(ci)
t ⇒ A

)
= R(ci,ci) × P (At/h

(ci)
t−1) (3)

In the equations above, R represent the social influence
matrix. The highest value of score S will dictate the state
of the current particle in the current time window. For the
purpose of this work just the grouped particles are considered
relevant and passed to the feature extraction step described
in Section 3.1. Particles marked as alone are instead pruned
and not considered in the further processing steps. A visual
example of pruned particles annotated in red is shown in the
second row of Fig. 2.

In our work, particles are generated through the Good-
Features-To-Track algorithm, and tracked by the Lucas-
Kanade optical flow. The influence matrix is computed at
discrete steps at the end of each tracking period.

3. ENTITY GROUPING

3.1. Feature Extraction

The objective of the features extraction process is to iden-
tify low-level information relative to the particles interaction.
Features are extracted only for the particles obtained from the
mutual influence model. In our approach we have selected the
average distance among the particles and their density as two
representative elements to infer the interaction among parti-
cles. In fact, proximity, which is partially exploited also in
the influence model measures the instantaneous relationship
among neighboring entities. At the same time, the higher the
density of the particles, the higher the chance for them to in-
teract.
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Fig. 1. Computation of the particles influence matrix.

For both features, orientation is used as a prior, meaning
that particles are considered in the same group, only if their
relative offset in terms of direction of motion fall in a prede-
fined range. For the purpose of visualization, in Fig. 3 (a),
a set of synthetic entities are shown where a reference entity,
annotated in blue, is grouped with the neighboring entities an-
notated in red. On the contrary, two entites are not included
in the same group since their orientations do not conform to
the orientation of the reference entity. Moreover, a reference
entity annotated in yellow and neighboring entities annotated
in red are shown in Fig. 3 (b). These entities constitute a
group, as shown in (c), according to the compliance in terms
of density and mutual distances with the reference entity.

3.2. Classification

In order to properly weight the features we have selected for
entity grouping, we have trained a feedforward multi-layer
perceptron (MLP) neural network. The motivation for ex-
ploiting MLP is in its substantial ability, through backprop-
agation, to resist to noise, and the dexterity to generalize. To
group the particles from the preceding stage of the mutual
influence model, the average distance of a reference particle
with its neighbors is accumulated and averaged. A particle
is only considered for grouping with a reference particle if
its relative orientation is compliant with the orientation of a

(a) (b) (c)

Fig. 3. Entities grouping. Synthetic example of moving en-
tities (a), moving entities obtained from the particles mutual
influence model (b) and grouping implemented according to
the motion and density features (c).

reference particle. The density and average distance of the
reference particle are fed as an input to the MLP.

The output y is obtained by the propagation of input x
through the hidden layers as in Eq. (4), where y0 is an input
vector.

y0
W 1, b1−−−−→ y1

W 2, b2−−−−→ ....
WL, bL−−−−−→ yL (4)

In MLP networks, there are L + 1 layers of neurons, and
L layers of weights. During the training stage, the weightsW
and biases b are updated so that the actual output yL becomes
closer to the desired output d. For this purpose, a cost function
is defined as in Eq. (5).

E (W, b) =
1

2

nl∑
i=1

(di − yLi )2 (5)

The cost function measures the squared error between the
desired and actual output vectors. The backpropagation is
gradient descent on the cost function in Eq. (5). Therefore,
during the training stage, weights and biases are updated ac-
cording to Eq. (6) and Eq. (7).

∆W l
ij = −η ∂E

∂W l
ij

(6)

∆blij = −η ∂E
∂blij

(7)

The learned weights and biases are used to predict groups
from the inputs during testing stage.

In Fig. 4, the tracked groups of entities are shown. Two
groups, annotated in cyan (left) and yellow (right) respec-
tively, are zoomed and shown in the third row of Fig. 4. Pri-
marily, entities are snipped with the particles mutual influence
model and propagated over a predefined temporal window to
associate them in groups in consonance with the features. At
the same time, these groups are then mapped to a new set of
snipped entities, with mutual influence model, which are then
tracked over the same temporal window and the re-association
process is repeated over time.
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(a)

(b)

Fig. 4. Input frame (a), entities grouping with the zoom on
two sample groups (b).

4. RESULTS

For the experiments, we have considered two datasets: the
UCLA Courtyard dataset [8] and the BIWI Walking Pedestri-
ans dataset [12]. The UCLA dataset consists of two distinct
scenes from a wide top/side viewpoint of a courtyard at the
UCLA campus. The dataset comprises of a 106-minute video,
30 fps, and 2560 x 1920 resolution. The dataset presents hu-
man activities including walking, talking, riding-skateboard,
riding-bike and driving car. The BIWI dataset includes 2
videos at the resolution of 640 x 480, 25 fps. Here we have

considered only the ETH sequence because of the exclusive
presence of pedestrians.

(a)

(b)

Fig. 5. Particle influence and entity grouping. Results ob-
tained on the UCLA dataset (a) and on the BIWI dataset (b).
For visibility, labels are super-imposed on the original frame
and the corresponding grouped entities are zoomed in lower
row.

For the influence model, we have configured the follow-
ing parameters: the length of the time window (time lapse
between two observations in the influence model) has been
set to 45 frames and the standard deviation of the Gaussian
in Eq. (1) has been set to 0.8. These parameters are kept
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constant for both sequences to demonstrate the capability of
generalization.

The neural network has been configured considering one
input layer, two hidden layers and one output layer. The in-
put layer consists of two neurons, each hidden layer consists
of three neurons, and a single neuron is allocated to the out-
put layer. The configuration of neural network in terms of
number of layers and number of neuron does not affect the
performance significantly. To extract the input features, the
relative orientation with a reference particle is set to ±30 de-
grees. Furthermore, the distance threshold from the reference
particle is set to 80 pixels. For the purpose of training, we ex-
ploited 1000 training samples, where each sample is a vector
of two observations namely; average distance and density of
particles.

The obtained results are displayed in Fig. 5. The first im-
age shows an example of the method applied on the UCLA
dataset, where we can notice a very clear group composition,
especially for zones A, D and E. In zone B the number of par-
ticles is not dense as in the previous cases, but still grouping is
possible since the distance and density features of the entities
are sufficient for the neural network. In zone F, instead, two
groups have been detected instead of a single one; this can
be ascribed to the severe shadowing, in which the pedestrian
is located where, in fact, features of the entities are mainly
segmented into two groups.

The quality of the results is also confirmed by the ETH
sequence, where the groups are well defined (zones A, B, and
C). However, in this case a few mistakes are also present (zone
D). This is most probably connected to the limited resolution
and the compression artifacts.

The UCLA dataset have much better results in terms of
grouping not only because of the resolution but also because
the bird eye view is less accentuated and the illumination con-
ditions are considerably better.

5. CONCLUSION

In this paper, we have proposed a method to detect and track
moving entities using a particle-based approach. According
to the mutual influence model, particles are analyzed on the
basis of their dynamic properties. For this purpose, we have
extracted the average distance and density features for the par-
ticles sharing similar orientation. The obtained features are
then exploited to train a multi-layer perceptron neural net-
work, using the back propagation algorithm. Experimental
results on two benchmark datasets, UCLA and BIWI, have
demonstrated that our method can be efficiently used to detect
and track moving entities present in the scene at a low com-
putational burden, thus saving precious resources for any fur-
ther processing step, compared to more traditional approaches
based on detectors.

6. REFERENCES

[1] N. M. Oliver, B. Rosario, and A. P. Pentland, “A
bayesian computer vision system for modeling human
interactions,” PAMI, IEEE Transactions on, vol. 22, no.
8, pp. 831–843, 2000.

[2] S. Hongeng, R. Nevatia, and F. Bremond, “Video-based
event recognition: activity representation and proba-
bilistic recognition methods,” Computer Vision and Im-
age Understanding, vol. 96, no. 2, pp. 129–162, 2004.

[3] A. Fathi, J. K. Hodgins, and J. M. Rehg, “Social in-
teractions: A first-person perspective,” in CVPR. IEEE,
2012, pp. 1226–1233.

[4] S. Pellegrini, A. Ess, and L. Van Gool, “Improving data
association by joint modeling of pedestrian trajectories
and groupings,” ECCV, pp. 452–465, 2010.

[5] B. Solmaz, B. E. Moore, and M. Shah, “Identifying
behaviors in crowd scenes using stability analysis for
dynamical systems,” PAMI, IEEE Transactions on, vol.
34, no. 10, pp. 2064–2070, 2012.

[6] P. Rota, N. Conci, and N. Sebe, “Real time detection
of social interactions in surveillance video,” in ECCV.
Workshop on Analysis and Retrieval of Tracked Events
and Motion in Imagery Streams. Springer, 2012, pp.
111–120.

[7] W. Choi, K. Shahid, and S. Savarese, “Learning con-
text for collective activity recognition,” in CVPR. IEEE,
2011, pp. 3273–3280.

[8] M. R. Amer, D. Xie, M. Zhao, S. Todorovic, and S. C.
Zhu, “Cost-sensitive top-down/bottom-up inference for
multiscale activity recognition,” in ECCV, 2012.

[9] T. Lan, L. Sigal, and G. Mori, “Social roles in hierarchi-
cal models for human activity recognition,” in CVPR.
IEEE, 2012, pp. 1354–1361.

[10] H. Ullah and N. Conci, “Crowd motion segmentation
and anomaly detection vis multi-label optimization,”
in ICPR workshop on Pattern Recognition and Crowd
Analysis, 2012.

[11] W. Pan, W. Dong, M. Cebrian, T. Kim, J. H. Fowler, and
A. S. Pentland, “Modeling dynamical influence in hu-
man interaction: Using data to make better inferences
about influence within social systems,” Signal Process-
ing Magazine, IEEE, vol. 29, no. 2, pp. 77–86, 2012.

[12] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool,
“You’ll never walk alone: Modeling social behavior for
multi-target tracking,” in ICCV, 2009, pp. 261–268.

5


