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ABSTRACT

Over the last 4 years phenotyping is becoming more and more
automated, decreasing a lot of manual labour. Features, which
uniquely define the plant, can be extracted automatically from
images. As a lot of plant data has to be processed in order to
extract the features, fast processing of these features is a chal-
lenge. Therefore in this paper, a new method for automatic
segmentation of individual leaves from plants with a circular
arrangement of leaves (rosettes) is proposed, together with an
algorithm to extract the line of symmetry of the leaf. Fur-
thermore, in order to achieve fast processing for phenotyping
plants, four feature extraction methods are parallelised in or-
der to run on the CPU and GPU. Our evaluation results show
that by parallelizing the feature extraction methods, it is possi-
ble to calculate the image moments, area, histogram and sum
of intensities 5 to 45 times faster than single threaded imple-
mentations.

Index Terms— segmentation, parallelisation, phenotyp-
ing, OpenCl, image processing

1. INTRODUCTION

Plant analysis by computer vision is a promising non-destruc-
tive method which can be performed in an automatic way.
Several methods have been proposed in literature which fo-
cus on the leaves solely, such as the LIMANI [1] framework
or LEAF GUI [2]. The LIMANI framework focuses on the
automatic segmentation and measurement of venation pat-
terns. LEAF GUI is a user-assisted software tool that facili-
tates improved empirical understanding of leaf network struc-
ture. These frameworks are of value for analysing plants,
though the disadvantage is the fact that leaves are not seg-

mented automatically. Apart from the venation patterns it is
also possible to extract other features such as plant growth [3],
area of the leaves, relative growth rate, compactness of the
rosette, diameter of the rosette, stockiness, and intensity of
the plant image [4–7]. The biggest limitation, however, is that
these features are usually not extracted from the leaves solely,
but rather from the entire rosette. All these features have to be
calculated for each plant and for every time frame, requiring a
lot of processing time, which can introduce a bottleneck in the
analysis of plants. Because of the before mentioned problems,
we can state there is a need for (1) automatic leaf segmenta-
tion (i.e., in the discussed state-of-the-art leaf segmentation is
done manually) and (2) fast processing for feature extraction
to cope with growing datasets. Therefore, an algorithm capa-
ble of segmenting individual leaves is presented in this paper.
Additionally, new and generic features are proposed that al-
low for parallel processing in order to achieve fast processing
of the plants.

The remainder of this paper is as follows: Section 2 ex-
plains how automatic leaf segmentation from a plant rosette
can be done. Subsequently section 3 introduces the algorithm
to extract the line of symmetry from a leaf. Next, Section
4 gives an overview of features that are extracted in parallel
from the rosette. Evaluation results are presented in Section
5. Finally, Section 6 ends this paper with conclusions.

2. LEAF SEGMENTATION

In order to be able to extract features accurately, it is nec-
essary to segment the rosette as precise as possible. As de-
scribed by De Vylder et al. [7], several effective and effi-
cient methods exists to extract individual rosettes such as su-
pervised pixel classification methods, pixel clustering based
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methods and threshold methods. In this paper, chlorophyll
fluorescence imaging is used in order to capture images of
the plants. As can be seen in Figure 1 a), an image taken
with chlorophyll fluorescence imaging results in a grayscale
image which is easy to segment by a fixed threshold. This
is done by comparing every pixel value to an empirically de-
termined threshold value in order to decide if the pixel be-
longs to the plant or the background. By using a fixed thresh-
old, more complex and computational demanding methods
are avoided [7].

Fig. 1. a) Chlorophyll fluorescence image of a plant. b)Image
and contour of plant after applying thresholded segmentation.

The advantage of using a fixed threshold is the simplicity
of the implementation. Using a fixed threshold, however, is
only possible if the images are similar to each other. In or-
der to guarantee similar illumination for the plants, we need
to work in a controlled environment, which is the case for
chlorophyll fluorescence imaging.
After the threshold segmentation of the rosette, the leaves
needs to be segmented from the plant. In order to do so, the
contour from the segmentation is extracted first. The contour
is a useful feature that helps to indicate where the leaf starts
and ends.

2.1. Leaf extraction

In order to extract the contour from a binary image, the
Moore neighbourhood algorithm is used [8]. The Moore
neighbourhood algorithm uses an image where the back-
ground is segmented from the foreground and runs over the
pixels on the edge of the foreground. An example of an ex-
tracted contour can be seen in Figure 1 b). Using the found
contour, segmentation is done in three steps.
The first step consists of finding the pixels of the contour
which belong to the stem, since those are indicative of where
the leaf starts and the stem ends. Our algorithm takes ad-
vantage of the fact that pixels of the stem lie close to each
other in the image, but are not close together in the list of
pixels belonging to the contour. In order to find these stem
pixels, every pixel of the contour is compared to every other

pixel of the contour. During this comparison, two distances
are calculated: the Manhattan distance between the two pix-
els and the distance between the two pixels in the list of the
contour pixels. The Manhattan distance, a fast metric without
multiplications or powers, is a relatively small number as
two pixels of the stem should be close to each other. The
second distance is the difference of the absolute value of the
indices of the pixels in the contour list. This distance value is
bigger since two pixels of the same stem are separated by the
contour pixels of the leaf. An example of points marked by
the algorithm can be found in the first step of Figure 2.

Fig. 2. In order to segment the stems, the pixels from the con-
tour belonging to the stem are found. Secondly, consecutive
points are put in a group together. Finally the first and last
points of the groups are connected

As can be seen, points come in groups. Therefore, step 2
of our algorithm assigns consecutive points on the contour to
the same group; per stem of a leaf, there are two groups (see
Step 2 Figure 2).
In order to segment the stem, the interior (i.e. the points
closest to the rosette) and exterior points (i.e. the points fur-
thest away from the rosette) of the two groups are connected.
These connections are determined by following the contour
(see Step 3 Figure 2). The resulting two lines indicate where
the leaf starts and the stem ends. By combining these lines
with the contour of the rosette, the leaf can be segmented ac-
curately.
Some examples of segmented leaves can be seen in Figure 3.

In these images, leaves 1, 2 and 4 are segmented clearly, but
leaf 3 is in fact two leaves overlapping. This problem only
occurs when the rosette has a lot of leaves and the leaves start
to overlap, which is not the case when the plant is still young.
If the leaves are not overlapping, a clear segmentation of the
individual leaves will happen.
As the leaves are now segmented, it is possible to extract fea-
tures for every individual leaf.
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Fig. 3. Leaves that are segmented from the rosette.

3. LINE OF SYMMETRY EXTRACTION FROM
INDIVIDUAL LEAVES

One of the main features that can be calculated based on a
leaf solely, is the line of symmetry. The line of symmetry
can help to determine how symmetric or asymmetric a leaf is.
This information can help to link this feature to environmental
conditions or disease symptoms such as lesions.
As is shown in Figure 4, the line of symmetry of a leaf can be
extracted by the following three steps:

1. Segment the leaf and the stem.

2. Calculate the centroid based on the image moments of
the leaf and the stem.

3. Draw a line between the centroid of the leaf and the
centroid of the stem.

The first step is explained in the previous section where
the stem is segmented in order to get the leaf. The second step
starts by calculating the image moments based on the con-
tours. Image moments are statistical features, which can give
properties such as the skewness, kurtosis, area and perime-
ter. Image moments are calculated following Eq. 1, where
i + j defines the order of the image moment. In this equation
I(x, y) is the value at position x and y of the contour.

Mi,j =
∑
x

∑
y

xiyjI(x, y) (1)

Using these moments it is possible to calculate the cen-
troid of the stem and the leaf based on Eq. 2. Both centroids
can be seen in Figure 4 at step 2. In Eq. 2, x̄ is the x coordi-
nate of the centroid and ȳ is the y coordinate of the centroid.
Since the 2 centroids are known, the line of symmetry can be

drawn between them.
Based on this line of symmetry it is then, for example possi-
ble to divide the area of the leaf in two and see how much the
two parts of the leaf differ.

x̄ =
M10

M00
; ȳ =

M01

M00
(2)

The line of symmetry is only one of the many features
which can be extracted from the leaf. In the next section we
discuss 4 other commonly used features, i.e. the image mo-
ments, area, histogram and the sum of intensities, from the
rosette are discussed. They are calculated in parallel in order
to speedup the feature calculations.

Fig. 4. The first step in order to get the line of symmetry
consist of segmenting the leaf and the stem. In the second
step the centroids are found and in the 3th step the centroids
are connected by the line of symmetry.

4. PARALLEL PROCESSING OF LEAF FEATURES

In order to provide a solution for the need of fast processing,
which is introduced in Section 1, the calculation of pheno-
typing features are parallelised to achieve fast processing.
In our work, the decision is made to extract four relevant
phenotyping features namely (i) image moments based on the
contour of the rosette; (ii) the area - since it is indicative of the
plant growth; (iii) the histogram - because it is a widely used
representation of an image and; (iv) the sum of intensities.
The sum of intensities of an image is also used as a feature
in plant phenotyping since the fluorescence emission by the
chlorophyll, which can be seen in the in the intensity values,
indicates how efficient the plant utilises photosynthesis.
In order to speed up the calculations of these features, multi-
ple images are processed in parallel. This kind of parallelism
is called data-parallelism, which means that the same instruc-
tions are applied on different sets of data at the same time.
This is done with loop unrolling, where the amount of images
is divided in equivalent sets. On every iteration, several im-
ages are processed in parallel.

We have chosen this kind of parallelism methodology
because it results in straight forward calculations. Another
approach is for example subdividing the images in smaller
images so that more calculations can be done in parallel. The
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latter would cause more overhead as images only have a res-
olution of 300 x 300 pixels.

The next section discusses the results of the first method-
ology using loop unrolling.

5. RESULTS

Results of the leaf segmentation and symmetry calculation al-
gorithms are presented in this section. Subsequently the re-
sults of the parallelisation of the feature calculation methods
are discussed.

5.1. Leaf segmentation and line of symmetry calculation

Regarding plant analysis, it can be stated that a subjective
analysis indicates that our algorithms clearly segments the
leaves and calculate the line of symmetry. The segmented
leaves from the plants (such as in Figure 3) were presented to
experts in the field of rosette phenotyping and judged that the
leaves are clearly segmented and are suitable to work with.

5.2. Parallel processing of leaf features

In order to test the speedup of the data-parallelism approach
for feature calculations, every calculation is done multiple
times in order to eliminate possible outliers. In this research
every calculation is done a 100 times on 5120 images with
a resolution of 300 x 300 pixels. All the calculations were
done both sequentially and parallel on the CPU and parallel
on the GPU. The devices used for these benchmarks are the
intel i7 870 with 8 logical cores and the ATI Radeon HD 5870
which consists of 20 computing units, each consisting of 80
processing elements.
The OpenCl framework is used to parallellize the feature
extraction methods as OpenCl allows the same code to run
on both the CPU and GPU. In OpenCl the code that has to
be executed on the CPU or GPU is defined in the Kernel. A
work-item (i.e. a thread) is a single implementation of the
kernel and is able to access the resources of the work-group.
All the work-items in a work-group can access the same re-
sources. In this case the resources per work-group consist
of a range of images. Each work-group is then assigned to a
computing unit. To understand how OpenCl works, two cases
are presented:

Case 1

5120 work-groups are created with each work-group con-
sisting of 1 work-item, which is defined by the localsize.
In our GPU there are 20 computing units, which means
that all computing units are occupied, though not all the
processing elements are working. This is because the lo-
calsize is set to one, which means there is only one thread
in each work-group.

Case 2

20 work-groups are created with each 256 work-items.
Each computing unit is occupied and has 256 images to
process each. Since there are 80 processing items per com-
puting unit all of them are occupied processing an image.
When a work-item is done the scheduler swaps the work-
items so that all the work-items (and therefore the images)
get processed.

In order to speedup the results, experiments are done with
different sizes of work-groups. The results for the four fea-
tures i.e moments, area, histogram and sum of intensities cal-
culations can be seen in Table 1 for the GPU & Table 2 for
the CPU.

When looking at the results for the image moment and
area calculations it can be stated that the GPU performs much
better than the CPU. This can be explained by the fact that
both of these functions require a lot of calculations in com-
parison to the amount of memory accesses. As more time is
spent to calculating in comparison to the time spent to reading
and writing of the data, this is an advantage for the GPU that
it designed to do many calculations and is not designed for a
lot of memory accesses.
As can also be seen in Table 1 and Table 2, calculating the his-
togram of an image involves extracting the addresses from the
data, resulting in extra memory access and a reduced speedup,
especially on the GPU. On the other hand, as can be seen for
the area calculations, when the write address is known in ad-
vance, the calculations are a lot faster. As a result it can be
said that the CPU is a better choice when it comes to achiev-
ing fast processing for histogram calculations.
The results for the intensity calculations presented in both ta-
bles confirm the advantage of GPU over CPU for speeding up
feature calculations.

6. CONCLUSION AND FUTURE WORK

In this paper we show that it is possible to automate leaf seg-
mentation from rosettes. The proposed algorithm gives rise
to the possibility to automate leaf analysis tools even further,
since the current state-of-the-art leaf analysis tools require
to manually segment the leafs. By automatically segmenting
leaves, less time has to be invested in manual labour, which
allows for more time devotion to analyse feature extraction
methods, such as the line of symmetry which is presented
here. In the future further analysis is required to see how
accurate the segmentation objectively is. This can be done by
constructing a dataset with ground truth annotation.

Secondly, phenotyping features (image moments, area,
histogram and sum of intensities) are parallelised in order
to achieve fast processing. The data-parallelism methodol-
ogy results in speed ups of 5 to 45 times for the image mo-
ments, area, histogram and sum of intensities calculations re-
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Image moments Area Histogram Sum of intensities
workgroups localsize Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup

5120 1 49,83 2,74 14,89 2,23 106,12 0,07 134,84 1,25
2560 2 27,14 5,03 8,7 3,81 57,87 0,12 74,13 2,27
640 8 9,1 15,01 6,06 5,47 23,45 0,31 22,78 7,38
160 32 4,62 29,57 3,28 10,11 17,64 0,41 12,27 13,70

80 64 3,14 43,50 3,5 9,47 6,54 1,10 9,67 17,39
20 256 3,02 45,23 2,46 13,48 4,66 1,54 9,48 17,74

Table 1. The results of the calculations of the 4 features on 5120 images (with a resolution of 300x300 pixels) done a 100 times
on the GPU. The time is given is seconds, the speedup indicates how much faster the implementation is compared to a single
threaded implementation on the CPU.

Image moments Area Histogram Sum of intensities
Threads Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup

1 136,6 1 33,16 1 7,17 1 168,14 1
2 72,11 3,16 18,1 1,83 3,18 2,25 90,16 1,86
4 43,29 4,55 12,06 2,73 2,19 3,27 64,5 2,61
8 29,99 4,73 9,57 3,46 1,58 4,54 55,29 3,04

16 28,9 4,78 9,47 3,50 1,43 5,01 51,08 3,29
32 31 4,41 9,57 3,46 1,52 4,72 54,38 3,09
64 29,64 4,61 9,49 3,49 1,38 5,20 52,67 3,19

Table 2. The results of the calculations of the 4 features on 5120 images (with a resolution of 300x300 pixels) done a 100 times
on the CPU. The time is given is seconds, the speedup indicates how much faster the implementation is compared to a single
threaded implementation on the CPU.

spectively. This fast processing on a high end GPU and CPU
indicates that when using a less powerful CPU or GPU (e.g. a
device with a low price) for industrial plant phenotyping, the
images can still be processed very fast. Because of this fast
processing there is room for additional features to be added.
Apart from industrial analysis, it is also possible to process
terabytes of images captured in the past in a very short time
span.
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