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ABSTRACT
The estimation of the frequency and decay factor of a sin-
gle decaying exponential in noise is an important problem
that has commanded significant attention in the research lit-
erature. In this paper, we examine the performance of com-
putationally simple, yet accurate and robust, discrete Fourier
transform based estimators. These estimators employ a coarse
search followed by an interpolation step to obtain precise esti-
mates of the parameters. Although their performance initially
improves as the number of samples is increased, it reaches
a minimum before departing significantly from the Cramer
Rao Lower Bound (CRLB). We tackle this problem in this
paper and propose a windowing strategy that allows the es-
timation performance to track the CRLB for a large number
of samples. Furthermore, a practical implementation of the
proposed method is given. Extensive simulations are reported
that demonstrate the effectiveness of the proposed strategy.

Index Terms— Damped Exponentials, Frequency Es-
timation, Parameter Estimation, Additive White Gaussian
Noise.

1. INTRODUCTION

The estimation of the parameters of a decaying exponential
in additive Gaussian noise is an important research problem
with a wide range of applications, [1, 2, 3]. In this work we
are interested in robust, efficient, yet computationally simple
estimators. The signal model we are concerned with is

x[k] = s[k] + w[k], k = 0 . . .N − 1, (1)

where the signal of interest s[k] is an exponential of the form

s[k] = Ae(−η+ j2π f )k = Azk. (2)

Here A is the complex signal amplitude and η the decay factor.
The frequency f is normalised by the sampling frequency,
i.e. f ∈ [−0.5, 0.5]. The noise terms, w[k], are zero mean,
complex additive white Gaussian with variance σ2, giving a
nominal signal to noise ratio (SNR) ρ0 =

|A|2

σ2 , [1]. Our goal
is to obtain estimates of f and η from a block of N samples.

The Cramer Rao Lower Bounds (CRLBs) for the frequency,
σ2

f , and damping factor, σ2
η, and are given by, [4]

σ2
η = 4π2σ2

f

=
(1 − |z|2)3(1 − |z|−2N)

2ρ0
[
−N2|z|2N(1 − |z|2)2 + |z|2(1 − |z|2N)2] . (3)

A large number of approaches have been proposed to
solve this problem and a comprehensive review of these tech-
niques is found in [3]. High resolution methods are usually
aimed at the sum of multiple exponentials model, [5, 6, 7, 8].
Although these can be accurate, they are computationally
expensive. This makes them at the very least unattractive
for a single exponential, and at worst impractical when the
number of samples is large. Therefore, the Discrete Fourier
Transform (DFT) based estimators should be adopted in the
case of a large number of samples due to their robustness
and computational efficiency, [3]. In the rest of the paper, we
focus on the interpolated DFT approach, [9].

The two-stage DFT-based estimation strategy, consisting
of a coarse search followed by interpolation on the DFT coef-
ficients, has proven itself to be effective for the estimation of
the frequency and damping factor of a decaying exponential
in noise, [10, 11, 1]. Putting f = m+δ

N , where −N/2 ≤ m <
N/2 is an integer and |δ| ≤ 0.5 is a frequency residual, the
coarse search estimates m before a fine search stage is used
to estimate δ and η. The methods of [10] and [11], as well
as a number of related estimators proposed in [2], have simi-
lar performances and as a result only the Bertocco algorithm,
hereafter referred to as the B&Q algorithm (see [9]) will be
implemented in this paper. The distinguishing feature of the
method proposed in [1], named the A&M estimator, is that
it can be implemented iteratively which permits it to achieve
the minimum variance for the methods belonging to its class.
As we will see, this amenability to iterative implementation is
very important to the strategy proposed in this work.

One fundamental problem afflicting these methods in the
damped case is that their performance can significantly depart
fromt the CRLB as N increases. Whereas the CRLB flattens
out as a function of N, the performance of the practical es-
timators can even exhibit an increase in variance due to the
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degradation of the effective SNR, [1, 3]. In fact, whereas it
was found in [1] that an optimum number of samples exists
that gives the best estimation variance, no practical imple-
mentation has been put forward to achieve this. Therefore,
we study this problem in this paper and propose a windowing
strategy that not only improves the estimation performance,
allowing it to track the CRLB as it does in the undamped case,
[12], but importantly is practically implementable.

The rest of the paper is organised as follows: In section
2 we present the windowed algorithms. In Section 3 we ad-
dress the problem of a practical implementation of the pro-
posed estimators. In particular, we present the iterative strate-
gies for both the B&Q and A&M algorithms and discuss the
differences between them. Simulation results are presented
in section 4 to assess the estimation performances of the two
estimators. Finally, some conclusions are drawn in section 5.

2. WINDOWED INTERPOLATION ON FOURIER
COEFFICIENTS

The width of the main lobe of the DFT of a damped expo-
nential is broadened by the presence of the damping factor.
In [13] the authors address this by pre-multiplying the signal
with a Gaussian window of the form ν[k] = eγ0k−γ1k2

, γ0, γ1 ≥

0. Although they state that the sharpest spectral line is ob-
tained when γ0 = η, they do not explain how this can be
achieved given that η is unknown, and furthermore, do not
give any guidance on how to set γ1. Notwithstanding these is-
sues, multiplying a noisy signal with a rising exponential am-
plifies the noise at the tail end and makes this strategy useless.
On the other hand, the estimation performance was shown in
[1] to reach a minimum for a signal length that is dependent
on the damping factor (Nmin ≈ 3/η for the A&M algorithm).
Therefore, one could conceive a strategy for cropping the sig-
nal length to Nmin should it exceed this value. However, it is
desirable that any method to improve the performance also
tracks the CRLB as N increases. Since it has been estab-
lished that the performance degradation is caused by the poor
SNR of the tail samples, we propose to reduce the emphasis
on these samples by pre-multiplying the signal with a decay-
ing window. We suggest that a suitable window is one that
matches the envelope of the signal. That is we consider a
window of the form ν[k] = e−γk, γ ≥ 0. The DFT coefficients
of the windowed signal is

X(n) =
1
N

N−1∑
k=0

s[k]ν[k]e− j2π kn
N

=
1
N

N−1∑
k=0

Ae(−(η+γ)+ j2π f )k+φe− j2π kn
N .

Let us put α = η + γ. Thus we have that

X(n) =
1
N

N−1∑
k=0

Ae(−α+ j2π f )k+φe− j2π kn
N .

We can see that the estimation problem remains the same but
with a modified damped damping factor, α. Therefore, the
estimators that were developed for the un-windowed case re-
main applicable with the estimated damping factor being α̂.
We now present the A&M estimator:

• Let Y(k) denote the FFT of the signal.

• Locate m̂, the index of the maximum bin.

• Calculate the DFT coefficients X(m̂ + p) for p = ±0.5.

• Obtain the error discriminant

h =
1
2

X(m̂ + 0.5) + X(m̂ − 0.5)
X(m̂ + 0.5) − X(m̂ − 0.5)

. (4)

• Calculate ẑ−1 = cos
(
π
N

)
− 2 jh sin

(
π
N

)
.

• Obtain the estimates η̂ = ln
(
ẑ−1

)
− γ, and δ̂ = − N

2π∠ẑ
−1.

For the B&Q estimator, the error discriminant and equa-
tion for ẑ are replaced by their appropriate forms, see [1].

The strategy proposed above was evaluated by simula-
tions and the results are shown in Figs. 1 and 2. The orig-
inal B&Q and A&M algorithms are shown as well as their
windowed counterparts. The CRLB curve is also included for
reference. The window damping factor is set equal to the true
damping factor (something that of course is not possible in
practice). The results clearly show that whereas the original
algorithms diverge wildly from the CLRB as N increases, the
windowed algorithms track it. Also observe that the curves
for the damping factor exhibit exactly the same trend as the
frequency. This is true for all results reported here and there-
fore we will only show the frequency estimation performance
in the rest of the paper. Now, in order to validate our choice of
γ = η, we show the estimation performance of the frequency
against γ in Fig. 3. We see that the variance curves show a
minimum around the true value of η.

Although the above results show the effectiveness in the
proposed strategy and its ability to solve the problem of the
original algorithms, the damping factor of the signal is un-
known (to be estimated) and the question of how to imple-
ment the estimators remains. This problem will be addressed
in the following section.

3. ITERATIVE ESTIMATION

We have so far shown that the estimation algorithms per-
form significantly better if the signal is pre-multiplied by an
exponentially decaying window. Furthermore, we have de-
termined that the damping factor of the exponential window
should be matched to the true damping factor of the signal.
However, the signal’s damping factor is not known a-priori
and is to be estimated. Therefore, we propose to estimate the
decay factor first and then use this estimate to construct the
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Fig. 1. Frequency estimation comparison between the win-
dowed and original algorithms. 2000 Monte Carlo runs were
used.

Table 1. Windowed B&Q Estimator

Let hp =
X(m̂+p)

X(m̂) , and ẑp =
1−hp

1−hpe− j2πp/N , for p = ±1
Get η̂p = − ln

∣∣∣ẑp

∣∣∣, and δ̂p = N
2π∠ẑp

Set η̂ = η̂1, if δ̂1 ≤ 0 and δ̂−1 ≤ 0,
η̂ = η̂−1, otherwise

Let η̂(1) = η̂ and ν(k) = e−η̂k, k = 0 . . .N − 1
Apply window to signal to give x(k)← x(k)ν(k)
Recalculate the DFT coefficients X(m̂ + p), p = 0,±1
Repeat steps 1 to 3 to obtain new estimates η̂ and δ̂
Finally adjust η̂ using η̂← η̂ − η̂(1)

window before repeating the estimation process. We apply
this method to the B&Q as well as the A&M estimators.
However, as the A&M estimator is already implemented it-
eratively, see [1], we can incorporate the estimation into the
iterative steps. The resulting estimators are shown in tables
1 and 2 (Note that the coarse estimation stage, giving m̂ is as
before and is not shown here).

The B&Q estimator, shown in table 1, involves an ini-
tial estimation of the damping factor in order to construct the
window. Although only the damping factor is needed for the
window and the re-application of the estimator, the decision
rule that we adopt (to choose between the estimates corre-
sponding to p = ±1) is based on the signs of the estimated
frequency residuals. This decision rule has been shown to
outperform the rule based on a comparison between X(m̂− 1)
and X(m̂ + 1), [14].

Table 2 shows the procedure of the A&M algorithm. It is
important to emphasise the fundamental differences between
it and the B&Q estimator. The A&M estimator can be applied
iteratively, which permits us to incorporate the estimation of
the damping factor and windowing directly into the iteration.
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Fig. 2. Damping factor estimation comparison between the
windowed and original algorithms. 2000 Monte Carlo runs
were used.

Table 2. Windowed A&M Estimator
Initialise η̂0 = 0 and δ̂0 = 0
For q = 1 to Q

Construct window ν(k) = e(−η̂q−1− j2π
δq−1

N )k, k = 0 . . .N − 1
Apply window to signal to give xw(k)← x(k)ν(k)
Calculate the DFT coefficients Xw(m̂ + p), p = ±0.5
Let h = 1

2
Xw(m̂+0.5)+Xw(m̂−0.5)
Xw(m̂+0.5)−Xw(m̂−0.5)

Calculate ẑ−1 = cos
(
π
N

)
− 2 jh sin

(
π
N

)
Get η̂ = ln

∣∣∣ẑ−1
∣∣∣, and δ̂ = − N

2π∠ẑ
−1

Obtain estimates are η̂q ← η̂ − η̂q−1 and δ̂q ← δ̂ + δ̂q−1

Therefore, we iterate Q times, and at each iteration we esti-
mate both η̂ and δ̂. Note that whereas the frequency estimate
accumulates from one iteration to the next, the damping fac-
tor estimate is adjusted by compensating for the estimate of
the previous iteration. This is due to the fact that the damping
factor of the previous iteration plays the role of the window
damping factor, γ, in the current iteration.

The theoretical analysis of the algorithms is beyond the
scope of this paper. Therefore, we proceed in the following
section to validate the performance of the algorithms using
simulations.

4. SIMULATION RESULTS

The estimators detailed in the previous section were imple-
mented and their performances verified. As previously men-
tioned, we only show the plots of the frequency estimates.
The estimation performance for the damping factor shows
identical trends.

First we obtain the estimation performance as a function

3
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Fig. 3. Frequency estimation as a function of the window
damping factor γ. 2000 Monte Carlo runs were used.

of the number of samples. The results are given in Fig. 4. In-
cluded are the curves for the original estimators as well as the
CRLB. Observe that although the original iterative A&M al-
gorithm improves on the B&Q estimator, especially for small
N, both diverge from the CRLB for large N. The windowed
estimators, on the other hand, track the CRLB well as N in-
creases. Fig. 5 shows a close up of the performance curves of
the windowed estimators. The B&Q estimator clearly has the
worst performance. The curves of the A&M estimator corre-
sponding to two and three iterations coincide for N ≤ 400, but
the performance after two iterations deteriorates slightly after
that. The third iteration, however, brings the algorithm back
in line with the CRLB curve. Note that the loss with respect
to the CRLB is quite small at around 0.1 dB.
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Fig. 4. Frequency estimation performance of the iterative
windowed algorithms as a function of the number of samples.
2000 Monte Carlo runs were used.

Next we show in Figs. 6 and 7 the performance as a func-
tion of the nominal SNR, ρ0. The estimation variance is pre-
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Fig. 5. Frequency estimation performance of the iterative
windowed algorithms as a function of the number of samples.
Zoomed plot showing only the windowed estimators. 2000
Monte Carlo runs were used.

sented in the first plot and the curves for the original esti-
mators and the CRLB are included for comparison. Observe
that the original estimators are grouped together and are about
9dB worse than the windowed algorithms. Also note that in
both cases, original and windowed, the B&Q algorithm has
slightly worse breakdown threshold than the A&M estima-
tors. In order to appreciate the differences between the win-
dowed B&Q algorithm and the A&M estimator (after Q = 2
and 3 iterations), we show their ratio of the estimation vari-
ance to the CRLB in Fig. 7. It is clear that the best perfor-
mance both in terms of estimation variance and breakdown
threshold belongs to the A&M estimator after 3 iterations.
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Fig. 6. Frequency estimation performance using the itera-
tive windowed algorithms as a function of SNR. 2000 Monte
Carlo runs were used.
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Fig. 7. Plot of the ration of the estimation variance of the iter-
ative windowed algorithms to the CRLB. 2000 Monte Carlo
runs were used.

5. CONCLUSIONS

In this paper we examined the problem of estimating the fre-
quency and damping factor of a single decaying exponential
in noise. We have proposed and evaluated a set of estimators
that employ an exponentially decaying window to prevent the
performance from deteriorating as the number of samples in-
creases. We also presented practical implementations of the
proposed strategy for both the A&M and B&Q algorithms.
Extensive simulation results were given to verify the large im-
provement in the estimation performance.
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