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ABSTRACT

In this paper we propose a new technique for automatic cor-
rection of eye blink artifact in single channel EEG recording.
The proposed technique consists of three steps. In the first
two steps a dictionary matrix and a reference signal to the
eye blink artifact are constructed from the recorded data,
respectively. In the proposed technique we suggest building
the dictionary matrix using empirical mode decomposition
(EMD). In the last step, orthogonal matching pursuit (OMP)
is utilized to find the minimum number of columns of the
constructed dictionary matrix that fit the reference signal.
Simulation results on real EEG data show that the proposed
technique outperforms some of the existing single channel
blind source separation techniques.

Indexing Terms: Single—Channel BSS, Empirical Mode
Decomposition, EEG, Orthogonal Matching Pursuit.

I. INTRODUCTION

The electroencephalogram (EEG) is a noninvasive mea-
sure of brain electrical activity. EEG can be used as a
clinical tool for studying the nervous system, monitoring
of sleep stages, and diagnosing diseases such as epilepsy.
Unfortunately, The measured EEG signal is usually contam-
inated with different kinds of artifacts such as eye blink,
eye movement, and muscle artifacts. These kinds of artifacts
are very common in EEG recordings and they complicate
the analysis of the EEG data. Therefore, artifacts must be
removed from the EEG signals before analysis.

In this paper we are concerned with correcting eye blink
artifact. A traditional approach for dealing with such artifacts
is to simply exclude the contaminated epochs from the
analysis. However, following this approach, useful EEG data
may be rejected, too. Since the recorded EEG data can be
modeled as a linear combination of underlying brain activity,
as well as artifact signals, the recorded EEG data can be
decomposed into a set of source signals using blind source
separation (BSS) techniques [1], [2], [3], [4].

The most powerful BSS technique known in the literature
is independent component analysis (ICA) [2], [3]. ICA is a
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BSS technique that decomposes the measured signals into
a set of independent components (sources). However, for
the hidden source signals to be recovered successfully using
ICA, all source signals have to be independent, and the
number of channels have to be greater than or equal the
number of the hidden source signals [1]. Even though eye
blink artifact can be considered independent from brain
signals, the assumption that brain signals themselves are
independent is questionable. In addition, the number of brain
sources that generate the measured EEG data is generally
unknown, and hence can not be assumed to be equal to the
number of the measuring electrodes, which vary according to
the available measuring system. Therefore, in general, EEG
data does not fulfill the assumptions associated with ICA.
As a result, eye blink artifact separated using ICA is usually
contaminated with other brain source signals. In addition,
and as shown by the example presented in Section IV,
the performance of different ICA algorithms depend on the
objective function utilized for measuring the independency
of the separated signals.

Since ICA requires the number of the recording electrodes
to be at least equal the number of the hidden source signals,
another BSS technique was developed in the literature for
solving the under—determined BSS problem. In the under—
determined BSS problem it is assumed that the number of
source signals is known a priori and is greater than the
number of sensors [4]. Some techniques were developed
in the literature for the case of unknown number of source
signals [5]. This BSS technique is known in the literature as
sparse component analysis (SCA). The success of the SCA
technique depends crucially on the sparsity of the hidden
source signals in the original domain, or in a transform
domain. Unfortunately, finding a transform domain in which
both the eye blink artifact and the hidden brain source
signals are sparse is not a trivial task, and, hence, there is a
difficulty in utilizing the SCA technique for correcting eye
blink artifacts.

The extreme case of the under—determined BSS is the case
of having a single measuring electrode (channel). In this case
the BSS problem is called single—channel BSS (SC-BSS).
The SC-BSS problem is also applicable to multichannel



recordings for the case when each measuring channel has to
be analyzed separately due to the nature of the contaminating
artifacts. Several techniques have been developed in the
literature for solving the SC-BSS problem. One of these
techniques, which is relevant to the proposed approach,
solves the SC-BSS problem by converting the single channel
data into a virfual multichannel recording, and then applying
a BSS technique on the constructed multichannel signals [8],
[9], [10], [12]. A summary of some of these techniques is
presented in Section II.

Correcting eye blink artifact from a single channel record-
ing using one of the techniques summarized in Section
I suffer from the following limitations: 1) some of the
techniques described in Section II are not appropriate for
handling EEG data, 2) the number of rows in the virtually
constructed multichannel data may be less than the number
of hidden source signals, and hence ICA may fail in this case,
3) the separated sources has to be investigated to recognize
the separated source signal corresponding to the eye blink
artifact. This is typically done by visual inspection, and as
such is a very time consuming and tedious process. Thus,
there is a need for this process to be automated.

In this paper we propose a new technique for automatic
correction of eye blink artifact in a single channel EEG
recording. The proposed technique consists of three steps. In
the first step we suggest building a dictionary matrix from
the measured EEG data using empirical mode decomposition
(EMD) [6]. See Section II for a brief description of EMD.
Then, in the second step, a reference signal for the eye
blink artifact is constructed from the measured data. Finally,
the waveform of the contaminating eye blink artifact is
estimated as the weighted sum of few columns of the
constructed dictionary matrix. The indices of the selected
columns, as well as the associated weights, are estimated
using orthogonal matching pursuit (OMP) [7]. The eye blink
artifact is then corrected by subtracting the estimated eye
blink signal from the original EEG data.

II. SINGLE CHANNEL BLIND SOURCE
SEPARATION (SC-BSS) TECHNIQUES

In this section we provide a brief summary of some SC-
BSS techniques. These techniques consist of two steps. In
the first step the single channel recording is converted into
a virtual multichannel data, and then a matrix factorization
technique is utilized in the second step to separate the
constructed multichannel data into different source signals.

1) Nonnegative Matrix Factorization of a Time
Frequency Representation. In this approach the measured
signal is converted into a virtual multichannel data by
transforming the data into the time-frequency (TF) plane
using short time fourier transform (STFT). Then the
magnitude spectrum of the TF data is decomposed using
nonnegative matrix factorization (NMF) [8]. This approach
works properly when the spectrum of the hidden source
signals are not overlapped in the TF domain. A condition
which is not satisfied for EEG data.

2) Singular Spectrum Analysis (SSA) In this approach
the measured signal x(¢),r = 1,...,T, where T is the
number of samples, is converted into a virtual multichannel
data by constructing a dynamical embedding (DE) matrix

X € RM*L where M is called the embedding parameter, and
L=T —M+1. The kth column of the DE matrix X consists
of M successive samples of x(¢) starting from x(k). After
constructing the DE matrix, either principal component
analysis (PCA) [9], or ICA [10] is utilized to decompose
X into different components. Each one of the separated
components is considered as an estimate of one of the
hidden source signals. Unfortunately, this approach critically
depends on the value of the embedding parameter M, and
it assumes that the hidden source signals are stationary and
independent. These condition are generally not applicable
on EEG data.

3) Wavelet-ICA (WICA) In this approach the measured
signal x(¢) is decomposed into spectrally nonoverlapping
components using wavelet decomposition to construct
a virtual multichannel data matrix X(z). Then an ICA
algorithm is applied on the data matrix X(¢) to produce
a set of independent components [11]. The main difficulty
associated with this approach is selecting an appropriate
mother wavelet, especially when no a priori knowledge of
the source of interest is available [12].

4) Ensemble EMD-ICA (EEMD-ICA) Before explaining
the EEMD-ICA technique, we start first by describing the
main idea of the empirical mode decomposition (EMD)
technique [6]. EMD assumes that every signal x(¢) consists
of a superposition of zero-mean, narrow—band, and quasi-
symmetrical components ¢;(f) called intrinsic mode func-
tions (IMFs). Following this model, a signal x(¢) can be
expressed as x(t) = Y, ¢;(t) +r(t), where r(¢) is a residual
that represents the trend of the signal x(¢), and each IMF c¢;(r)
is meant to be mono—component and satisfies the following
two conditions: 1) its number of extrema and zero-crossings
must be equal or differ at most by one, 2) at any point,
the mean value of its upper and lower envelopes, which
are defined respectively by the local maxima and the local
minima, should be zero. The IMFs ¢;(¢) are identified by
following the following sifting process [6].

1) Set r(t) =x(t), h(t)=r(t), and i =1

2) For k=1,... repeat the following steps until A(t) is

an IMF

a) Find all local minima and maxima of A(r).

b) Interpolate between the minima (resp., maxima)
to calculate the lower envelope Ej(¢) (resp., the
upper envelope E,(t)).

¢) Compute the mean envelope

— El(t>+Ell(t)

d) Update h(t) < h(t) —m(t).

3) Set ¢i(t) = h(t).

4) Update r(t) < r(t) — c;(1).

5) If the number of extrema of r(r) is less than three,

stop; otherwise increment i < i+ 1, set h(z) = r(z),
and go to Step 2.

As can be recognized from the above steps, and in contrast
to the Fourier or the Wavelet decompositions, the EMD de-
composition does not depend on predefined bases functions.
Rather, it is adaptive, and it follows the intrinsic oscillations
within the analyzed signal. However, one of the problems
associated with EMD is what is known as mode—mixing
phenomenon. This phenomenon is defined as the mixing of



different time scales in an IMF. This phenomenon can be
caused by intermittent signals and/or noisy data. The main
consequence of the mode—mixing phenomenon is getting
IMFs that are not monocomponents. Many approaches have
been developed in the literature for solving the mode—mixing
problem. One of these techniques is ensemble EMD (EEMD)
[13].

The EEMD-ICA technique suggested in [12] for solv-
ing the SC-BSS problem is based on constructing virtual
multichannel recordings by decomposing the recorded sin-
gle channel EEG data into a set of IMFs {¢;(¢)} using
EEMD. The derived IMFs are then arranged in a data matrix
C € RV*T where N is the number of the constructed IMFs,
and T is the number of samples of the original signal x(r).
The constructed multidimensional data matrix C is then
decomposed into a set of independent components using
ICA. The authors of [12] suggested utilizing the well known
ICA algorithm called FastICA [2]. The sources of interest
are then identified by visual inspection.

III. PROPOSED TECHNIQUE

As shown in the previous section, all the described tech-
niques have some common drawbacks. For EEMD-ICA, we
summarize these drawbacks in the following points: 1) the
number of rows N of the constructed data matrix C may
not be greater than or equal the number of the hidden
source signals, and hence the source(s) of interest may not
be fully extracted by the utilized ICA algorithm, 2) the
decomposition may depend on the objective function utilized
by the ICA algorithm for measuring the independency of
the separated source signals, and finally 3) the separated
source signals have to be manually investigated to select
the source(s) of interest.

In this section we propose a new technique for automatic
correction of eye blink artifact in single channel EEG record-
ing. The proposed technique does not perform BSS on the
measured EEG data x(¢). Rather, it utilizes a reference signal
y € RT*! to estimates the eye blink artifact as a weighted
sum of few columns of a dictionary matrix A € R”*L. The
reference signal is selected to have some information about
the eye blink artifact. In the proposed technique we propose
methods for constructing both A and y from the signal x(¢).
The proposed technique consists of the following three steps.

III-A. Step 1: Building a dictionary matrix A

In this paper we suggest building a dictionary matrix A
from the recorded EEG data x(¢) using EMD decomposition.
Recall that the EMD decomposition suffers from the
mode—mixing phenomenon associated with decomposing
noisy data. This phenomenon can be caused also by the
presence of intermittent signals (like the eye blink artifact)
in the decomposed signal x(¢). Therefore, by adding a
random noise n(t) to the recorded EEG data x(r), and
then performing the EMD decomposition on the mixture
x(t) + n(t), the eye blink artifact is expected to either
split between different IMFs, or combine with other brain
oscillatory in a single IMF. In addition, every time a new
noise component n(¢) is added to the recorded EEG data
x(t), a new set of IMFs results from applying the EMD
decomposition on the mixture x(¢) + n(r). Therefore, in
the proposed approach we suggest utilizing the mode—
mixing phenomenon to build a dictionary matrix A from

IMFs resulting from applying the EMD decomposition on a
constructed noisy data x(¢) 4+ n(¢). The proposed approach
is summarized in the following steps.

1) Initiate an empty dictionary matrix A = [ |, select a
number of iterations /.., and select a noise standard
deviation (SD) level p.

2) For i=1,... I, repeat the following steps

a) Generate an i.i.d. Gaussian random noise n(t) and
adjust its amplitude such that its SD equals p.

b) Construct the noisy signal x,(r) = filter(x(r) +

c¢) Calculate the EMD decomposition of x,(t), C =
EMD (x,,(1)).

d) Update the dictionary matrix A =[A CT].

The following notes are in order. 1) In Step 2b the noisy
signal (x(z) +n(t)) is filtered to the bandwidth of the original
signal x(¢) to avoid getting IMFs that do not belong to the
bandwidth of x(z), 2) in Step 2c¢ the matrix C is calculated
using the procedure described in Section II.4, and 3) in Step
2d the matrix C is transposed because the IMFs obtained by
the procedure described in Section I1.4 are assumed to be
row vectors, rather than column vectors.

III-B. Step 2: Constructing a reference signal y

In this subsection a procedure for constructing a reference
signal y € RT*! (for the eye blink artifact) from the recorded
EEG data x(¢) is suggested. The reference signal has to be
selected to have enough information about the eye blink
artifact to guide the algorithm towards the desired signal.
However, the reference signal is not required to be an
exact replica of the eye blink artifact. To construct the
reference signal from the recorded EEG data we make use
of the following two facts: 1) under normal brain operation,
the EEG data has Gaussian distribution [14], and 2) the
amplitude of the eye blink artifact is much greater than
the amplitude of the normal EEG data. Accordingly, due
to the presence of eye blink artifact, a histogram of an EEG
data contaminated with eye blink artifact will show some
outlier samples that do not follow the Gaussian distribution.
Therefore, if the mean u and the standard deviation ©
of the Gaussian distribution of the clean EEG data are
known a priori, the samples of the measured EEG data that
most probably correspond to the eye blink artifact can be
identified as those samples that deviate G from the mean
u, where oo > 1 is some constant. Accordingly, we suggest
constructing a reference signal to the eye blink artifact using
the following thresholding equation

_ 0 el S X(k) S eu
Ye= { x(k) otherwise, M

where yy is the kth entry of y, and 6; and 6, are respectively
the lower and upper thresholds calculated using the following
equation.

0y, 8 =u+too, (@)

Note that selecting a small value for o causes EEG signal
to be represented in the reference signal y, and hence more
atoms will be selected in the third step to approximate the
EEG signal in y. On the other hand, selecting large value
for o will result in losing fine details of the artifact in
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Fig. 1. Selecting the upper and lower thresholds associated with
the EEG data in Fig. 2 by fitting its histogram by a Gaussian pulse.

the reference signal, and hence eye blink artifact may not
accurately fitted in the third step. Empirically, we found that
the proposed technique works fine for the range 1 < o < 2.

Unfortunately, however, the parameters ¢ and ¢ of the
Gaussian distribution are not known, and, therefore, they
have to be estimated. To accomplish this goal, we suggest
building a histogram from the samples of x(¢), and then
fitting the constructed histogram using a Gaussian pulse of
(x—pp)?

207
are respectively the amplitude, mean, and standard deviation
of the fitting Gaussian pulse. The fitting parameters uy, and
6 can then be utilized in (2) to estimate the upper and
lower thresholds. Since the outlier points in the histogram
of x(¢) (see Fig. 1) can affect the estimated values of the
parameters of the fitting Gaussian pulse, we can perform
the fitting process in two steps. In the first step, initial
guess aj, i, and o7 of the fitting parameters are calculated
using all samples of x(r). Then, more accurate estimate
of the fitting parameters uy, and 6y are calculated using
only the samples of x(r) that have amplitude values within
one standard deviation 6| from the estimated mean y;. The
histogram of the EEG data represented by the last waveform
in Fig. 2(a), as well as the asociated fitting Gaussian pulse
and the estimated thresholds, are shown in Fig. 1.

III-C. Step 3: Estimating the eye blink artifact

Recall from Section III-A that, due to the mode—mixing
phenomenon associated with the EMD decomposition, the
eye blink artifact is represented in some columns of the
constructed dictionary matrix A. Therefore, an estimate of
the waveform of the eye blink artifact can be obtained as the
weighted sum of these columns. Since the indices of these
columns are unknown, we can utilize the reference signal y
as a guide to select the desired columns of A, as well as the
associated weighting coefficients. Therefore, the last step in
the proposed approach is to select the minimum number of
columns of A that best fit the reference signal y. This can
be described mathematically by the following optimization
problem

the form py(x) =aysexp | —

, where ay, ur, and oy

min ||b||s, st [[AD—yl[s, <00 3)

where ||b]|¢, is the cardinality (i.e. the number of nonzero
entries) of the coefficient vector b, and Gy is a constant
proportional to the standard deviation of the difference
between the estimated artifact Ab and the reference signal y.
Recall from (1) that y equals zero over the range at which
the recorded EEG data x(¢) does not exceed the thresholds.

However, the estimated artifact Ab is expected to have
residual EEG signal over the same range. (See the second
and the third waveforms in Fig. 2(b).) Therefore, the quantity
|Ab — y|l¢, is expected to be proportional to the standard
deviation of the clean EEG data. Since the distribution of
the clean EEG data is approximated by the fitting Gaussian
pulse obtained in the previous subsection, we empirically set
69 = 0.76, where Gy is the standard deviation of the fitting
Gaussian pulse obtained in the previous step.

The optimization problem (3) can be solved using the
orthogonal matching pursuit (OMP) technique [7]. OMP
is an iterative technique, where in each iteration a single
column of A is selected, and the corresponding entry of b
is calculated using least squares. The selected columns of A
are selected based on their vicinity to the reference signal
v. See [7] for more details about the OMP technique and its
properties.

After convergence, the eye blink artifact is estimated as
xar(t) = (Ab)", and the cleaned EEG signal is calculated as
xc(t) = x(t) — xar(1).

IV. SIMULATION RESULTS

In this section we present an example to demonstrate the
efficiency of the proposed technique in removing eye blink
artifact from real EEG data. The EEG data were collected
using 20 electrodes placed according to the International 10-
20 System, and one EOG electrode to recorde the EOG
artifact. The sampling frequency was 205 Hz, and an av-
erage reference was used. The signal x(7) is constructed
as x(r) = s(¢) +v(¢), where s(r) is a 20 seconds of clean
EEG data recorded at one of the recording electrodes, and
v(t) is 20 seconds of the eye blink artifact recorded at the
EOG electrode. Constructing x(¢) using this technique, rather
than utilizing the data at one of the contaminated channels
directly, allows us to compare the estimated artifact with the
known implanted artifact v(¢). The waveforms presented in
Fig 2(a) from top to bottom represent respectively the signals
s(t), v(t), and x(¢).

For estimating the eye blink artifact using the proposed
approach, a dictionary matrix A is constructed using the
procedure described in Section III-A with [, = 100, and
the noise standard deviation p is selected as 0.25 times the
standard deviation of x(¢). On the other hand, the reference
signal to the eye blink artifact is constructed from x(¢) using
(1) and (2). The reference signal is presented by the second
waveform in Fig. 2(b). The extracted eye blink artifact x,,(¢)
is presented by the third waveform in Fig. 2(b), and the
lower waveform in Fig. 2(b) represents the cleaned EEG
data x.(r) = x(t) — x4(¢). As shown in the last two signals,
the eye blink artifact was extracted correctly by the proposed
technique. The correlation coefficient between the extracted
eye blink artifact and the implanted artifact v(z) is 0.93.

For comparison, we applied the EEMD-ICA algorithm on
x(7). In addition, two well known ICA algorithms (FastICA
[2] and Jade [3]) were utilized in the EEMD-ICA algorithm
to examine the impact of the utilized ICA algorithm on
the performance of the EEMD-ICA algorithm. The result
of utilizing FastICA and Jade are shown in Fig. 2(c), and
Fig. 2(d), respectively. The upper waveform in each figure
represents the extracted artifact, and the lower waveform
represents the corrected EEG data. As shown in these figures,
there is a difference between the performance of the two
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Fig. 2. Correcting eye blink ((%i)nifact in single channel EEG
recording using different techniques. (a) Original EEG data. The
curves from top to bottom are the clean EEG data, the eye blink
artifact, and the contaminated data x(¢). (b) Results of the proposed
technique. (c) Result of EEMD-ICA when the sources are separated
using FastICA. (d) Result of EEMD-ICA when the sources are
separated using Jade.

algorithms, and FastICA performed better than Jade. The
correlation coefficients between the estimated artifact and
the implanted artifact in this case are 0.79 and 0.59, when
FastICA and Jade are utilized in EEMD-ICA, respectively.
In addition, a residual artifact is noticeable in the corrected
EEG data in both cases. The main reason behind the poor
performance of the EEMD-ICA algorithm in this example
is that the eye blink artifact in both cases is not confined in
a single component of the separated components. The ones
shown in the upper traces in Fig. 2(c), and Fig. 2(d) are the
closest components (among all the separated components)
to the implanted eye blink artifact v(¢). Combining more
components to better approximate the eye blink artifact will
result in a loss of useful EEG data.
V. CONCLUSION

In this paper we proposed a new technique for automatic
correction of eye blink artifact in single channel EEG record-
ing. The proposed technique is based on estimating the eye
blink artifact by selecting the minimum number of columns

(from a constructed dictionary matrix) that match a reference
signal to the eye blink artifact. Both the dictionary matrix
and the reference signal are estimated from the analyzed
data itself. The dictionary matrix was built using EMD, and
the atoms are selected using OMP. Simulation results show
that the proposed technique outperform some of the existing
SC-BSS techniques.
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