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ABSTRACT

An advanced speech enhancement algorithm is proposed,

which employs partial speech reconstruction of highly dis-

turbed speech. The speech reconstruction algorithms assume

the source-filter model of speech production and construct es-

timates of clean speech source and filter signals using features

extracted from noisy input. A nonlinear harmonic regenera-

tion scheme for source signals is presented followed by two

methods for the estimation of the vocal tract filter charac-

teristics. The quantization method applies a priori trained

codebooks using clean speech training data and the paramet-

ric estimation method assumes a parabolic continuation of

low frequency envelope values. The predicted speech quality

of the enhanced speech output is assessed with composite ob-

jective measures, while the accuracy of the spectral envelope

estimations is analyzed with the log-spectral distance over

four manually generated signal-to-noise ratio scenarios.

Index Terms— speech reconstruction, model based esti-

mation, speech enhancement, noise reduction.

1. INTRODUCTION

The limitations of modern speech enhancement algorithms

become apparent when basic a priori assumptions of the

methods are not fulfilled at runtime. It has been shown

that conventional speech enhancement methods perform ade-

quately in environments with medium to high signal-to-noise

ratios (SNRs) and relatively stationary background noise

[1, 2]. The fact that the performance of conventional speech

enhancement is often unsatisfactory at lower SNRs is the ma-

jor motivation for exploring speech reconstruction systems.

This is where model based approaches to speech enhance-

ment find a high level of applicability. However, there are two

main challenges: i) finding a sufficiently good speech model

from which to reconstruct speech and ii) establishing a set of

features that can be estimated robustly from noisy speech [3].

The work presented here assumes the source-filter model

of speech production as the basis model. Thus, it is neces-

sary to develop methods for estimating clean versions of the

source and filter representations from the noisy input speech

signal. A method of harmonic regeneration in the source

signal is presented in section 3.1. For the filter—or spec-

tral envelope—estimation, two methods are described in sec-

tions 3.2.1 and 3.2.2. Finally, the construction of a synthetic

speech spectrum and the adaptive combination with the noise

reduced input spectrum are described in section 3.3.

2. CONVENTIONAL SPEECH ENHANCEMENT

Conventional speech enhancement algorithms aim to reduce

background noise while preserving the undisturbed speech

signal. Assuming additive noise, the time domain microphone

signal, y(t), is represented by

y(t) = s(t) + b(t), (1)

where s(t) and b(t) are speech and noise respectively.

The Discrete Fourier Transform (DFT) of the nth block of

the 16 kHz microphone signal using a Hann window, h, of

length M = 512 is defined as

Yµ(n) =
M−1∑

m=0

y(nr −m)hm e−j2πµm/M , (2)

with frameshift r = 128 and subband index µ = 0, . . . ,M−1.

The Wiener filter algorithm attempts to suppress noise

with an adaptive filter, Gµ(n), applied in the frequency do-

main as
ŜNR,µ(n) = Yµ(n)Gµ(n) , (3)

resulting in the frequency domain representation of the clean

speech estimate, ŜNR,µ(n). Improvements to the Wiener filter

algorithm incorporate information from previous frames into

the speech enhancement process. In one such method known

as recursive Wiener filtering [4], Gµ(n) is computed as

Gµ(n) = max

{
Gmin, 1−

Φ̂bb,µ(n)

Gµ(n− 1) · |Yµ(n)|2

}
, (4)

where Φ̂bb,µ(n) represents the estimated noise power spectral

density [5] and Gmin is the maximum attenuation [6].

Although conventional speech enhancement methods per-

form adequately in environments with SNR > 10 dB, prob-

lems arise when the noise masks the desired speech signal.

As a consequence, the Wiener filter inadvertently attenuates

masked speech simultaneously with the undesired noise.

3. PARTIAL SPEECH RECONSTRUCTION

For enhancing such highly distorted speech signals, a com-

putationally efficient partial speech reconstruction algorithm

EUSIPCO 2013 1569744463
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Fig. 1: Proposed speech enhancement algorithm consisting of speech reconstruction, noise suppression, and adaptive mixing.

can be used. The signal flow diagram of the proposed method

resulting in an estimate of the undisturbed speech signal ŝ(t)
is shown in figure 1. The speech signal enhancement con-

sists mainly of three algorithmic parts: conventional noise

suppression, partial signal reconstruction, and a mixing unit

that adaptively combines both of these signals.

The synthetic speech signal is generated by exploiting

correlations with time-frequency regions of speech that ex-

hibit sufficient SNR, using a priori trained models as well as

relevant features extracted from the noisy speech signal. In

order to achieve a satisfactory speech synthesis, a minimum

amount of speech signal portions should still have high SNR

levels. This condition is satisfied for automotive applications

in most cases where the additive noise components (engine,

wind noise, etc.) are concentrated in lower frequencies.

3.1. Harmonic Reconstruction

The first step of the speech reconstruction algorithm is con-

structing an estimate of the source – or excitation – signal

based on an aggressive version of the noise suppression in

(3). A high maximum attenuation (e.g. Gmin = −30 dB),

resulting in coefficients Gagg,µ(n), is suggested to generate a

noise-free signal:

Ŝagg,µ(n) = Yµ(n)Gagg,µ(n) . (5)

The outcome is used as a reference signal for reconstructing

the corrupted speech excitation signal.

The application of a computationally efficient nonlinear

operator to Ŝagg,µ(n) is proposed to reconstruct distorted har-

monics. It is well known that by applying a nonlinear char-

acteristic to a harmonic signal, sub- and super-harmonics are

produced. However, a full nonlinear characteristic can only

be efficiently applied in the time-domain while speech en-

hancement algorithms are often performed in the frequency

or subband domain.

A quadratic characteristic is chosen as the nonlinear op-

erator, which corresponds to the convolution of the signal

with itself in the frequency domain. By applying the auto-

convolution to a subset of subband signals at lower frequen-

cies only, harmonics in the desired frequency range are regen-

erated efficiently:

Q′
µ(n) =

M ′−1∑

m=0

Ŝagg,m(n) Ŝagg,µ+M−1−m(n). (6)

M ′ denotes the upper frequency bin of the convolution,

chosen out of the interval corresponding to frequencies of

1000Hz–2000Hz. Due to the modified nonlinear operator,

the harmonics are regenerated at desired frequencies but with

biased amplitudes (including components around 0 Hz that

must be removed). To reduce this effect, the produced sig-

nal is normalized by a smoothed estimate of its magnitude

spectral envelope:

Qµ(n) =
Q′

µ(n)

HQ′,µ(n) + ǫ
(7)

where ǫ is a constant to avoid division by 0. The frequency

smoothing of the magnitude spectrum is performed utilizing

a first-order IIR filter, first in the positive frequency direction:

H ′
Q′,µ(n) =

{ ∣∣Q′
µ(n)

∣∣, if µ = 0,
λf H

′
Q′,µ−1(n) +

(
1− λf

) ∣∣Q′
µ(n)

∣∣, else ,

(8)

and then in the negative frequency direction in an analogous

way leading to HQ′,µ(n). To guarantee stable operation, the

constant λf should be chosen out of the interval 0 ≤ λf < 1
and λf = 0.7 was utilized for (7).

3.2. Magnitude Spectral Envelope

Having assumed the source-filter model of speech production

and given the excitation signal estimation above, it remains

to find an appropriate estimate of the ideal vocal tract filter,

HS,µ(n). The observable vocal tract filter for block n of

the input signal is represented here by an approximation of

the magnitude spectral envelope, HY,µ(n), which is extracted

from the magnitude of the input spectrum, |Yµ(n)|. For this

work, the cost efficient method of spectral envelope extraction

2
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presented in (8) is applied with λf = 0.8. The next sections

describe methods for finding estimates of HS,µ(n) based on

features extracted from HY,µ(n).

3.2.1. Envelope Estimation Based on Codebooks

The codebook—or quantized—estimate of the spectral enve-

lope, Hcb,µ(n), is derived from an a priori trained codebook,

C
(K)
P+M , with K = 512 codebook entries. The kth entry con-

sists of a supervector comprising a log Mel spectrum feature

vector of length P = 24 followed by the corresponding spec-

tral envelope of length M .

This work includes the log Mel feature vectors to reduce

the computational effort of codebook entry selection, which

was previously performed using the M -length spectral enve-

lope directly. For the construction of feature vectors, P nor-

malized, triangular Mel filters are applied to the appropriate

normalized spectral envelope, noisy or noise reduced. This is

performed up to the frequency bin of interest during voiced

speech, such as in (6), corresponding here to a frequency of

2000 Hz, and followed by the logarithm operator.

As in previous work [7], normalized codebook entries are

extracted from the clean training data set and assigned using

the Linde-Buzo-Gray clustering algorithm. The log Mel dis-

tance is used during codebook training and at runtime to find

the codebook entry most similar to the input feature vector,

clms(n). This distance measure is defined as

D
(k)
lm (n) =

P−1∑

p=0

Gmel,p(n)
(
C(k)

p − clms,p(n)
)2

, (9)

for k = 0, . . . ,K − 1, and Gmel,p are the Mel filtered Wiener

filter coefficients that serve as SNR dependent weights. Dur-

ing training this SNR dependent weighting factor is not ap-

plicable. The index of the entry with the smallest distance is

calculated according to

κ(n) = argmin
0≤k<K

D
(k)
lm (n). (10)

Finally, the codebook estimate of the magnitude spectral

envelope is assigned to the entry with the smallest distance

Hcb,µ(n) = C
(κ(n))
P+µ . (11)

3.2.2. Envelope Estimation Based on a Parametric Model

As an alternative to the codebook method, a novel parametric

model for low frequency envelope estimation, represented by

Hpar,µ(n), is proposed [8]. The model is based on a logarith-

mic parabola shape that extends towards low frequencies from

the lowest frequency bin, µfix(n) = µ, where Gµ(n) > γpar.

As seen in figure 2, the logarithmic parabola shape is an-

chored to the reference envelope Havg,µ(n) defined by

Havg,µ(n) =
HY,µ(n) +HŜNR,µ

(n)

2
, (12)

Fig. 2: Example illustration of parabolic envelope reconstruction

the average of the noisy and noise reduced input envelopes,

so that

Hpar,µ(n) = Havg,µ(n) ∀µ ≥ µfix(n). (13)

At that point the curvature J(n), the initial exponential slope

minit(n), the minimum exponential slope mmin,µ(n), and

the maximum exponential slope mmax(n), of the desired

parabola are computed from signal features and the loga-

rithmic parabola is recursively extrapolated towards lower

frequencies using:

Hpar,µ(n) =
J(n) ·Hpar,µ+1(n)

min {mmax(n),max {mmin,µ(n),mµ(n)}}

∀µ < µfix(n), (14)

where

mµ(n) =





minit(n), if µ = µfix(n)− 1,

Hpar,µ+2(n)

Hpar,µ+1(n)
, else.

(15)

The parabola’s minimum exponential slope is set to the local

exponential slope of the noisy signal’s envelope:

mmin,µ(n) =
HY,µ+1(n)

HY,µ(n)
. (16)

To find good parameter estimators, the training data set

is used to find the parameters of the best-fitting parabola in

each frame with reliably detectable voice activity. This is

done using a simple minimum search on the log-spectral dis-

tance (LSD) measure (26) between estimator and the known

clean speech signal’s envelope HS,µ. Also, each frame’s sig-

nal features are calculated. The resulting optimal parameters

are then stored together with the corresponding features in a

supervector. Approximate functional dependencies between

features and parameters are heuristically fit to these data sep-

arately for each noise condition, introducing coefficients ai
and bi for i ∈ {mµfix

, J,mmax}.

In previous experiments [8], the most useful feature

proved to be the reference envelope’s exponential slope

around µfix(n):

mavg,µfix(n)(n) =

√
Havg,µfix(n)+1(n)

Havg,µfix(n)−1(n)
. (17)

3
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This feature is used to estimate the parabola parameters via

the fit coefficients determined in the training:

mµfix(n)(n) = amµfix
·mavg,µfix(n)(n) + bmµfix

(18)

J(n) = aJ ·mavg,µfix(n)(n) + bJ (19)

mmax(n) = ammax
·mavg,µfix(n)(n) + bmmax

. (20)

3.3. Synthesis Combination and Adaptive Mixer

The excitation and envelope estimates are combined:

Ŝ′
rec,µ(n) = Qµ(n) ·Hrec,µ(n), (21)

where
Hrec,µ(n) ∈ {Hpar,µ(n), Hcb,µ(n)} . (22)

Either an SNR-dependent mixture of the reconstructed and

the noise reduced signals is performed or an additional atten-

uation, Gatt, of the noise reduced spectrum is applied:

Ŝrec,µ(n) (23)

=





(
1− αµ(n)

)
Ŝ′

rec,µ(n) + αµ(n) ŜNR,µ(n),

if
(∣∣∣Ŝ′

rec,µ(n)
∣∣∣ > K1

∣∣∣ŜNR,µ(n)
∣∣∣
)
∧ (cvar(n) > K2) ,

Gatt ŜNR,µ(n), else.

Heavily distorted harmonics are detected if the synthe-

sized magnitude spectrum exceeds the noise reduced magni-

tude spectrum by a specific margin. For enhanced separabil-

ity between voiced speech and noise or noise-like periods the

variance measure, cvar(n), of the subband SNR in dB over

the frequency within a certain range of values (e.g. 200 Hz–

1500 Hz) are taken into account. Further measures like the

statistical voice activity detection, cvad(n), from [9] can be

employed additionally. The value of K1 corresponds to 6 dB

and K2 = 25 dB. For noise-only subband signals, an addi-

tional attenuation Gatt is applied. The mixing weights can be

normalized within the range of [0, 1]:

αµ(n) =
min

{
γrec, Gµ(n)

}
−Gmin

γrec −Gmin
. (24)

Once the synthetic speech signal is generated, it is adap-

tively combined with the conventionally noise reduced signal

from (3) in the subband domain according to:

Ŝenh,µ(n) (25)

=

{
ŜNR,µ(n), if (Gµ(n) > γrec) ∨ (µ > µr, max) ,

Ŝrec,µ(n) , else .

The adaptive mixing is only utilized up to a predefined fre-

quency bin, µr, max, chosen from the same interval as M ′ in (6).

In good SNR conditions, i.e. if the SNR-dependent estimate

Gµ(n) exceeds a predefined threshold γrec > Gmin, the con-

ventionally noise suppressed output is used.

Fig. 3: Log-spectral distortion of envelope estimates

4. EVALUATIONS

A test set of 22 speech files per each SNR ∈ {0, 5, 10, 15} dB

is generated for the evaluation using different car impulse re-

sponses and stationary background noises. Both the noise and

the impulse responses were measured in an automotive acous-

tic environment. The maximum noise attenuation was set to

Gmin = −14 dB.

4.1. Objective Envelope Estimation Performance

The LSD is used for envelope estimation evaluation:

Dls =
10

L

N∑

n=0

√√√√
µr,max∑

µ=0

Kµ,n

Kn

lg2

{
max

{
HY,µ(n), δY

}

max
{
Hrec,µ(n), δrec

}
}
.

(26)

The lower bound is defined as

δY = 10−5max
µ,n

{HY,µ(n)}, (27)

and similarly for δrec. For evaluating the envelope distortion,

the binary mask Kµ,n∈{0, 1} selects only those components

that satisfy the condition: HY,µ(n) ≥ δY . The corresponding

normalization is given by Kn = max{
∑

µ Kµ,n, 0.1}. N

represents the number of potential frames and L corresponds

to the number of frames for which Kn ≥ 1. The analysis

of the distortion is only performed at lower frequencies up to

1200Hz.

The evaluation results as seen in figure 3 show that both

the codebook, and the parametric estimator provide better re-

sults than the noisy or noise reduced envelopes, except for a

very good SNR of 15 dB. The parametric approach outper-

forms the other methods in all of the noise conditions.

4.2. Pseudo-Subjective Composite Results

In [10], several composite objective measures are proposed

that combine individual objective measures to predict the sub-

jective quality of noise reduced signals after the application of

speech enhancement algorithms. The subjective quality rat-

ings were obtained using the ITU-T P.835 methodology de-

signed to evaluate the quality of enhanced speech along three

4
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Fig. 4: Signal quality composite score

dimensions: signal distortion, noise distortion, and overall

quality.

As seen in figure 4, the proposed speech reconstruction

method improves the composite mean opinion score (MOS)

for signal distortion compared to that of conventional noise

reduction. Both methods for spectral envelope estimation per-

form equally well and this suggests a heavy dependence on

the excitation signal generation algorithm. The composite

measure for noise distortion (not pictured) suggests improve-

ments only in the 0 dB SNR scenario, and thus the improve-

ment in overall quality is slightly less than that of signal dis-

tortion.

5. CONCLUSIONS

Complementing conventional speech enhancement with the

proposed partial speech reconstruction algorithms achieves

improvements in both signal and noise distortions. Based on

the analyses presented above, it can be concluded that cor-

rections of the distorted spectral envelopes are possible to a

high degree at all SNR levels, especially in the case of the

parametric parabola estimation. This envelope correction has

the ability to improve the quality of distorted speech given an

excitation signal of adequate quality.

The predicted speech distortion improvement from the

composite objective measures shows the same improvement

for both the parametric and the codebook based envelope es-

timation methods when combined with the harmonic source

regeneration method. This result suggests that the excitation

signal has a large influence on the perceived quality of the

enhanced speech output and that there may exist a subjective

tolerance for errors in spectral envelope estimation.

An example of the enhanced speech output can be seen

in figure 5, where spectra of the noisy microphone signal,

conventional noise reduction signal, and the partially recon-

structed signal are depicted side by side. The presence of har-

monic spectral lines at low frequencies is plainly visible here

and this effect contributes to a more natural sounding speech

output after the application of speech reconstruction.
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Fig. 5: Analyses of speech originating in an automotive environment
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