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ABSTRACT
Alzheimer’s disease (AD) is considered one of the most dis-
abling diseases and it has a high prevalence in developed
countries. It is as well the most common cause of demen-
tia and it affects particularly the elderly. The current AD
diagnosis accuracy is relatively low. It is therefore neces-
sary to optimize the methods for AD detection. The elec-
troencephalogram (EEG) is an inexpensive and noninvasive
technique, that is able to record the electromagnetic fields
produced by the brain activity. It has shown in the recent past
a growing quality of the contribution to show brain disorders.
The aim of this study was to evaluate the individual and com-
bined power of several EEG features in AD discrimination.
95.00% of sensitivity, 100.00% of specificity, 97.06% of ac-
curacy and 0.98 of AUC were the best classification results
obtained in this work.

Index Terms— Alzheimer’s disease, Electroencephalo-
gram, diagnose, elderly people

1. INTRODUCTION

Alzheimer’s disease (AD) is a brain illness characterized as
being progressive, degenerative and irreversible. The origin
of this disease still remains unknown. So far, no single factor
has been identified as being responsible to cause AD. AD can
affect several cerebral areas connected with memory, think-
ing, planning and attention [1]. It seems that a combination
of several factors, such as: age, genetic inheritance, environ-
ment, lifestyle, obesity, diabetes, hypertension and choles-
terol, may be responsible for this disease [2]. An autopsy
or brain biopsy is the only way to make a definitive diagnosis
of AD [3]. This disease, in 2001, reached more than 21.1 mil-
lion of people around the world [3]. The greatest risk factor
universally accepted for AD is increasing age. The number of
people with AD will increase significantly all over the world,
especially in western countries which have a high rate of aged
population[3]. There is still no cure for this devastating dis-
ease and unfortunately there is no straightforward test for AD

diagnosis. It is urgent to find an early and effective method
for AD detection, because the disease should be prevented or
treated effectively [3]. AD symptoms are often confounded
with other normal symptoms of aging and they are often sub-
tle at the beginning, that is why it is difficult to achieve an ac-
curate diagnosis [4]. Significant advances have been achieved
in recent decades to diagnose AD. Therefore, it is important
to continue the research to successfully diagnose the disease
in an early stage before substantial brain damage occurs [3].

The Electroencephalogram (EEG) has been used for sev-
eral decades as a diagnostic tool for dementia. EEG is a non-
invasive technique that records the electromagnetic fields of
the brain with a high temporal resolution [5]. The conven-
cional EEG frequency bands are delta (δ, 1-4 Hz), theta (θ,
4-8 Hz), alpha (α, 8-13Hz), beta (β, 13-30 Hz) and gamma
(γ, 30-60 Hz) [5]. AD is associated with an increase of power
in low frequencies (delta and theta band) and a decrease of
power in higher frequencies (alpha and beta) [5]. This phe-
nomenon also called “shift-to-the-left” appears in advanced
and intermediate states of AD and can be seen notably in
the peak occurring at alpha range. These changes are re-
lated to the destruction of cholinergic synapses in the Meynet
nucleus where transferase, responsible for the synthesis of
acetylcholine, is produced [6].

In this study, we want to evaluate the individual and com-
bined power of several EEG features in AD discrimination.
For this purpose, the Wavelet Transform (WT) was used to
process the EEG signals and twenty eight parameters were
calculated. The Linear discriminant analysis (LDA) with a
leave-one-out cross-validation procedure was performed in
order to evaluate the individual and the combined discrimi-
nant power of EEG extracted features.

2. MATERIALS AND FEATURES

2.1. Patients and controls selection/EEG recording

Thirty four subjects participated in the study (14 Control sub-
jects and 20 AD patients). EEGs were recorded from the in-
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ternational system 10-20 of 19 localizations (loci). Record-
ings were made with the subjects in a relaxed state and under
the eyes-closed condition in order to minimize the occurance
of artifacts. The sampling frequency was 200 Hz. Afterwards,
EEGs were organized in 5 seconds artifact-free epochs. All
recordings were digitally filtered with a 50Hz notch filter.

2.2. EEG Time-frequency representations

EEG signals, in general, tend to have rapid oscillations in
short intervals or slow variations in long intervals [7]. The
Fast Fourier Transform (FFT) was introduced in 1965 and
it remains the spectral EEG signal processing most com-
monly used until today [8]. Despite fast, FFT is not able to
provide information both in the time and frequency of sig-
nal characteristics. The spectral components do not reflect
changes along time representing a problem to analyze non-
stationary signals, as EEG [9]. Therefore, it is convenient
to use a transformation that provides a variable resolution
in time-frequency plane as is the case of Wavelet Transform
(WT) which provides a good time resolution for the high fre-
quencies and good frequency resolution for low frequencies
[8]. The WT is an optimal tool for data analysis when time
and frequency resolution are critical [8]. Equation 1 repre-
sents the calculation of WT per scale, sometimes called child
WT(ψ(t)τ,a).

ψ(t)τ,a =
1√
|a|
· ψ
(
t− τ
a

)
; (1)

where τ is the translational parameter, t represents the bins in
the time domain, ψ(t) is the Wavelet Mother and a represents
the basis functions range which acts as an enlargement factor
if a> 1 or as a compression factor if a <1.

The Discrete Wavelet Transform (DWT) was used in
the implementation. It uses a multiresolution analysis that
consists in obtaining increasingly smaller signal resolution
versions by successive filtering. The DWT uses one set of
two functions: a scale function (ϕ[n]) and a Wavelet function
(ψ[n]) [8].

ϕ[n] =
∑
k

h[k] · ϕ[2 · n− k] (2)

ψ[n] =
∑
k

g[k] · ϕ[2 · n− k] (3)

where k is the discrete translation parameter and h[k] and
g[k] respectively are the impulse responses of the lowpass and
highpass filters used in the WT analysis. The signal decompo-
sition in different frequency bands is achieved by successive
low-pass filters and high-pass filters in time, followed by sub-
sampling by factor of two until the maximum level of decom-
position (log2(N)) as is illustrated in the following equations

4 and 5 [8, 10].

DWTϕA [j, k] =

N

2j−1∑
n=0

DWTϕA [j − 1, n] · h[2 · k − n] (4)

DWTψD [j, k] =

N

2j−1∑
n=0

DWTψA [j − 1, n] · g[2 · k − n] (5)

where, k = 0, ..., N2j ; j = 0, ..., log2(N), A represents the
DWT approximated coefficients, D the DWT detail coeffi-
cients and N the signal length.

2.2.1. Feature extraction

Each 5 seconds of EEG signal epoch has undergone an aver-
age process per electrode and per subject. Fig. 1 explains the
signal averaging process per electrode and subject. In order
to extract some information from the EEG signals of AD pa-
tients and Control subjects, each signal resulting from the av-
erage process was decomposed to the level 5 by the Bior3.5
DWT (correct level of EEG signal decomposition to reach the
conventional frequency bands of EEG). TheBior3.5 Wavelet
proved to be a good choice in previous works [11, 12, 13].
The delta band corresponded to the approximated coefficients
A5 of DWT decomposition, the theta band to the detail coef-
ficients D5, the alpha band to D4, the beta band to D3 and
the gamma band toD2. Each EEG convencional band was re-
constructed in the time domain by theBior3.5 DWT with the
same length of the original average signal (5s - 1000 points).

Fig. 1. Signal averaging per electrode and subject.

Several features were extracted from each EEG signal re-
constructed component (δ, θ, α, β and γ). They characterized
the waveform in terms of its faster or less rapid and of greater
or smaller variability as will be needs to happen when ob-
serving the phenomenon "shift-to-the-left", described by the
rate amount of maxima (NMax) and minima (NMin), the
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zero-crossing (Zcr) rate, the mean derivative value at a point
(Mdif ), the signal energy (E) and the spectrum energy de-
celeration represented by the spectral ratios (r). The extracted
features were:

• NMax and NMin: Accounting and calculation of all
signal maxima and minima, respectively, by the varia-
tion of the signal waveform derivative (view Fig. 2).

Fig. 2. Signal maxima and minima, example.

• Zcr: The zero-crossing rate was calculated as [14]:

Zcri =
1

N − 1

N−1∑
n=1

I{si(n)si(n)− 1 < 0}, (6)

where i = {δ, θ, α, β, γ}, s is a DWT coefficient signal
of length N and I the indicator function. If the I value,
in a certain position, is equal to 1 a signal zero crossing
is found.

• Mdif : The mean derivative value at a point was ob-
tained by the equation 7 [15],

Mdifi =
1

N − 6
·
N−6∑
n=1

(
si(n)−

n+5∑
b=n

s(b)

)
, (7)

where i = {δ, θ, α, β, γ}.

• E: The Wavelet coefficients energies of δ, θ, α, β and
γ were obtained by the following generic equation 8

Ei =

N∑
n=1

si(n)
2
, (8)

where i = {δ, θ, α, β, γ}.

• r: Three spectral ratios were defined to resume the EEG
spectrum deceleration [11, 12, 13]

r1 =
Eα
Eθ

, (9)

r2 =
Eα + Eβ + Eγ

Eδ + Eθ
, (10)

r3 =
Eβ
Eδ

, (11)

r1 is a spectral ratio that enabled us to detect changes
when a slight slowdown in the EEG spectrum appears.
r2 is an index that summarized the EEG global slowing.
r3 is an extension of the definition of r1 to the whole
power spectrum.

Finally, all EEG features of all AD patients and control
subjects were normalized between 0 to 1.

3. STATISTICAL ANALISYS AND DISCRIMINATIVE
RESULTS

The performance of the parameters to discriminate between
groups was evaluated by means of a LDA with leave-one-
out cross-validation procedure. The classifier ability to dis-
criminate AD patients from control subjects was evaluated
using ROC curves [16]. The ROC curve is a graphical rep-
resentation of the trade-off between sensitivity and specificity
[16]. Sensitivity represents the percentage of patients cor-
rectly identified, specificity represents the percentage of con-
trols correctly classified and accuracy is the percentage of all
study participants correctly identified. The area under ROC
curve (AUC) summarized the system performance [16].

The LDA with a leave-one-out cross-validation procedure
was done for each of the EEG features previously extracted
(view Table 1).

Table 1. Discriminant results of LDA with a leave-one-out
cross-validation procedure for each extracted features.

Feature Sensitivity (%) Specificity (%) Accuracy (%) AUC
NMaxδ 85 64 76 0.80
NMaxθ 80 50 62 0.58
NMaxα 90 64 79 0.85
NMaxβ 65 93 76 0.74
NMaxγ 50 86 65 0.54
NMinδ 85 64 76 0.80
NMinθ 80 50 62 0.64
NMinα 95 57 79 0.85
NMinβ 65 93 76 0.74
NMinγ 65 50 59 0.53
Zcrδ 85 71 79 0.81
Zcrθ 80 57 62 0.57
Zcrα 90 64 79 0.86
Zcrβ 65 93 76 0.70
Zcrγ 50 86 62 0.57
Mdifδ 90 50 74 0.69
Mdifθ 80 50 68 0.63
Mdifα 90 56 68 0.62
Mdifβ 85 79 82 0.83
Mdifγ 75 64 71 0.75
Eδ 75 79 77 0.80
Eθ 75 79 67 0.85
Eα 75 71 74 0.78
Eβ 65 86 74 0.78
Eγ 75 50 65 0.63
r1 75 86 79 0.86
r2 75 93 82 0.88
r3 70 100 79 0.81

In Table 1 it can be observed that it is in the alpha band
that are located more differences between AD patients and
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Table 2. Classification results of LDA with a leave-one-out cross-validation procedure for the best features combinations of 2
to 11.

Number of features Best Features combination Sensitivity (%) Specificity (%) Accuracy (%) AUC
2 r2,r1 85.00 57.14 73.53 0.71
3 r2,r1, Zcrα 90.00 71.43 82.35 0.81
4 r2,r1, Zcrα,r3 90.00 71.43 82.35 0.81
5 r2,r1, Zcrα,r3,NMinδ 85.00 71.43 79.41 0.78
6 r2,r1, Zcrα,r3,NMinδ ,NMinα 90.00 71.43 82.35 0.81
7 r2,r1, Zcrα,r3,NMinδ ,NMinα,NMaxδ 95.00 85.71 91.18 0.90
8 r2,r1, Zcrα,r3,NMinδ ,NMinα,NMaxδ ,NMaxα 95.00 92.86 94.12 0.94
9 r2,r1, Zcrα,r3,NMinδ ,NMinα,NMaxδ ,NMaxα,Mdifβ 95.00 100.00 97.06 0.98

10 r2, r1, Zcrα, r3,NMinδ ,NMinα,NMaxδ ,NMaxα,Mdifβ ,Eθ 95.00 92.86 94.12 0.94
11 r2, r1, Zcrα, r3,NMinδ ,NMinα,NMaxδ ,NMaxα,Mdifβ ,Eθ ,Eδ 95.00 92.86 94.12 0.94
12 r2, r1, Zcrα, r3,NMinδ ,NMinα,NMaxδ ,NMaxα,Mdifβ ,Eθ ,Eδ ,Mdifδ 95.00 85.71 91.18 0.90

control subjects because this band provided features that have
a slightly higher discriminant power than the other EEG con-
vencional bands (for instance, better AUC results). This fact
can be explained by the “shift to the left” phenomenon. One
possible hypothesis to explain the concept of “EEG slowing”
involves a loss of the acetylcholine neurotransmitter [5].

As in a previous work [10], with a different EEG process-
ing technique, the spectral ratios provided good AUC results.
In this study, r2 offered the best individual AUC classifica-
tion parameter. However, unlike previous studies, in present
one ROC classification results with a high specificity in beta
and gamma bands were obtained. It is the case of parameters
NMaxβ , NMaxγ , NMinβ , Zcrγ and Zcrβ . One possible
explanation for this is that in previous works the EEG spec-
trum was restricted between 1 and 40Hz and so the beta and
gama bands were not accurately compared to the other EEG
convencional bands. So, in this work, beta and gama bands
provided features that allow to identify more precisely con-
trol subjects than in those previous works [10, 11, 12].

Finally, a LDA with a leave-one-out cross-validation pro-
cedure was performed to assess the combination of features
which reached the best classification performance. Table 2
shows the classification results for the best features combi-
nations of 2 to 11. The best features combinations were ob-
tained by a forward process of feature selection with the Ma-
halanobis distance criterium. It can be seen that the best
combinations of 2 to 11 were composed by the features that
showed the best individual feature classification AUC results
(view Table 1). The features combination of 9 provided the
best results, 95.00% of sensitivity, 100.00% of specificity,
97.06% of accuracy and 0.98 of AUC.

4. CONCLUSIONS

The increasing incidence of AD is a fact more and more com-
mon in developed countries and so they have to optimize ur-
gently all means of AD detection and treatment. In this study,
were evaluated the individual and combined power of several
EEG features in order to discriminate AD patients from con-
trol subjects. For this purpose, the WT was used to process
the EEG signals and 28 features were extracted.

Table 3 summarizes the classification statistics obtained in

some review studies that used leave-one-out cross-validation
procedure to discriminate AD patients from control subjects.
In short, we could say that our results were in line (sometimes
they overcome) with the results achieved by other studies.
Like Petrosian et al. [17] and Melissant et al. [18] studies,
we find 100% of specificity, which means that our classifier
identified correctly all the health subject. Concerning the ac-
curacy and specificity, our classifier provided better results
than the other previous review studies.

Table 3. Classification results of some review studies that
used leave-one-out cross-validation procedure in AD classifi-
cation.

Author Sensitivity (%) Specificity (%) Accuracy (%)
Huang et al. [19] 84 78 81

Petrosian et al. [17] 80 100 90
Viallate et al. [20] 73 84 78.25

Melissant et al. [18] 93 95 94
Melissant et al. [18] 64 100 82

Present study 95 100 97

Despite we have obtained good classification results,
some limitations for this type of study arise, because we lose
some spatial information when we retain only the average
measures over the channels. In the future we must have
more EEG signals to ensure generalization. It should also
be mentioned that the detected increase of EEG regularity
is not specific to AD, it appears in others dementias includ-
ing Parkinson’s disease, epilepsy, vascular dementia and
schizophrenia [5]. So, further works must be carried out with
patients suffering from other neurodegenerative diseases.
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