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ABSTRACT
An objective and accurate clinical assessment of a patient’s
movement disabilities are needed to provide the type and
intensity of therapy for them. Current assessments in use
require therapists to subjectively grade various actions
performed by patients, but this is an onerous and error prone
process. A common solution is to use the sensors built into
consumer devices to obtain patient metrics. However we
motivate for our approach of embedding sensors into objects
used in established assessments which provide patient metrics
in a ratified way. A significant contribution to this approach
is using force sensors to  capture subtle but important
movements which are not easily obtained otherwise and to
provide movement cues. Standard frequency domain analyses
can lead to misdiagnosis which motivates for data driven
approaches. like Singular Spectrum Analysis. This is used in
a novel way to identify the most informative eigentriple to
assess intraclass movements which are measures of the
quality of a patient’s upper limb movements. This is done on
a set of healthy subjects who also simulated movement
disorders and on some actual patients undergoing
rehabilitation.
Index terms - Singular Spectrum Analysis, accelerometer,
rehabilitation, instrumented objects, stroke

1 INTRODUCTION
Being able to perform activities considered normal is
important to someone who has suffered some loss of the use
of their limbs. The most common non-trauma source of this
are patients who suffer stroke. The inability to live an
independent life requires constant medical attention, resources
and often a caregiver as well. Where it is possible to
rehabilitate the use of the limbs, a customised regimen of
exercises needs to be tailored to the needs of the person,
depending on the extent of the disability. At the same time,
progress needs to be monitored in order to assess the
effectiveness of the treatment. Presently these are labour
intensive tasks requiring trained therapists who record data,
interpret them and keep track of what are often repetitive
exercises. Compounding this is the lack of clinical skills in
the home which allows only a limited transfer of the burden
of care and may hamper the rehabilitation process [1]. One
way to encapsulate the experience of healthcare practitioners
is in the form of tests for limb function for tasks deemed
essential in the Activities of Daily Living (ADL). There are
a large number of such established tests which involve the
movements of a patient and their interactions with various
objects one of which is the focus of our work.

The use of sensors in consumer devices such as mobile
phones and gaming consoles allow for a better user
experience as the processors in these devices deduce the
intention of the user by their movements. Embedding sensors
and processors into objects - often used daily - is referred to
as an instrumented object approach. 

Often the signals produced by the objects are processed

in the frequency domain in order to detect the underlying
processes of a movement. This is also true of most current
methods of analysing biomedical signals use standard time or
frequency measurements. Biological signals are never so well
behaved, leading to the search for newer types of analyses
which we feature in this paper.

In Section 2 we review some prior work in automated
assessment of patients and outline the motivation for our
approach. Section 3 describes our experimental setup. The
theory we use for our signal analyses is covered in Section 4.
Then we report the results of our experiments in Section 5
before we conclude in Section 6.

2 ASSESSING LIMB FUNCTION FOR STROKE
PATIENTS
In this section we present the motivation for our work,
presenting the case for instrumenting objects used in
standardised tests and review of related literature.

In formulating a test of limb functionality, enforcing a
protocol for their administration  provides an objective and
quantitative measure of the efficacy of the patient’s limb
function. These measures become data that can be used to
document the progress of any therapy administered and to
adjust its quantum. Also, tests can be tailored to more exactly
determine the nature of a disability, providing for a better
regimen of therapy. Now, these tests should not require great
expertise or time and effort to administer. Currently several of
these tests use visual based scoring which introduces a degree
of subjectivity and an inability to perceive subtle and possibly
multiple motions. A solution to this is to automate and
monitor the tests and/or the exercises through electronic
means. 

A popular approach is to use low cost consumer devices
and adapt them for medical use. Of particular interest are
those designed for the gaming market. However, these
adaptions are done on an ad-hoc basis, the availability and
function of these devices are subject to the vagaries of market
forces.

Instrumenting the objects used in established tests takes
more resources, but it contributes to existing knowledge and 
faster acceptance of use based on previous ratification. As far
we know this is a novel approach.

We seek to use tests that are widely accepted by the
industry as they have been ratified through years of
deployment. This provides a point of focus and discussion
with therapists who would be familiar with the methodology
used.

One such test is the Action Research Arm Test (ARAT)
formulated by Lyle [2] and further standardized by Yozbatiran
et al [3]. ARAT is a performance test designed to assess
recovery of upper limb function after damage to the cerebral
cortex. It can be used to check on progress in treatment as
well as evaluate the effectiveness of treatment. Its
administration does not require formal training and it uses
simple, short motions which can be scored and completed
quickly. The test consists of various objects to be moved in a
specified manner, on a table with a raised platform, with the
patient seated on a chair. There are other actions as well, that
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do not involve objects. An assessor will score the quality of
the movements, and a total score based on 19 tests provides
an overall measure. A useful biomechanical aspect of the
ARAT is the hierarchical nature of its assessments. This
means that the movements being tested are ranked in order of
difficulty in execution. In this instance, they are the Grasp,
Grip, Pinch and Gross Movements which involve the fingers.
In trying to capture such fine movement, it is difficult to use
methods which measure signals attached to the subject as
these may impede motion, or in the case of video gives
inherently noisy readings and is susceptible to the vagaries of
lighting and occlusion effects.

Since we are focussing on the ARAT, it is pertinent to
note that it is mainly used for assessing movement disorders
caused by stroke. Of the range of movement disorders
classified [4], we will look at two. First are involuntary
periodic-like muscle movements which come under several
categories depending on the intensity of motion, its rapidity
and the underlying causes. In this paper we use the generic
term tremor, which is well understood although the word is
more commonly associated with neurological disorders.
Second are distorted static hand postures which may be a
result of dystonia, which are a type of hypertonia caused by
the inability to control the muscle tone. Then there are various
degrees and combinations of these movements. Gross tremor
frequencies occurring in the movements of the hand were
around 1-4 Hz and 6-11 Hz. However, if the hand was
weighed down, these frequencies would be reduced [5]. A
higher band of frequencies at 15-30 Hz were attributed to
finger tremor.

Parnandi [6] describes the automated assessment of stroke
patients using the Wolf Motor Function Test (WMFT) [7]
detailing how the precision, smoothness and speed of
movements may be scored. He uses Inertial Measurement
Units (IMU) and motion capture (mocap) cameras to do this.
Since the WMFT does not require the patient to handle
objects, it requires sensors to be placed on the human body
for measurements.

Srinivasan et al. [8] discuss the various ways sensors such
as accelerometers embedded into objects used in ADL can
help in tele-rehabilitation.

Lee et al. [9] built an earlier prototype of the instrumented
device described in this paper which incorporates
accelerometers. Portions of their paper have been reproduced
here for the sake of continuity in discussion, in particular the 
sections on hardware and experimental setup and movement
disorder types.

The analysis of biomedical signals benefit from
decomposition into constituent parts to identify features of
interest but care is needed in considering the nature of the
signals.
2.1      Signal analysis approaches for assessment
Frequently biomedical signals are nonlinear and nonstationary
so that applying Fourier-based decomposition to these signals
produce mathematically correct functions, but these may not
have any physical meaning at all. These signal constituents
serve only to accommodate the lack of linearity and
stationarity as explained in [10]. A possible serious
consequence is that since various forms of movement
disorders are classified based on their intensity and rapidity as
mentioned earlier [4], an erroneous diagnosis may result from
a frequency that is not physically present! This is a problem
with decomposition methods based on basis functions decided
a priori.

To overcome this, current frequency analyses using data
driven decomposition processes have been introduced.

Singular Spectrum Analysis (SSA) has been used to analyse
naturally occurring physical phenomena and only recently it
has been applied to biological signals. The form of the
constituent signals it produces are not constrained, for
example sinusoids. SSA produces readily interpretable
constituent signals from short, noisy signals. Recently, Jarchi
et al. [11] analysed various interclass motions using SSA. In
contrast, we are analysing intraclass movements.
 In our work we combine two types of sensors not often
used together, namely accelerometers and force sensors. This
has the following benefits: i) it is capable of sensing fine
motion and pressure exerted by a person and ii) there is no
need to mount sensors on the body of a person. The next
section describes our setup.

3 EXPERIMENTAL SETUP
In this section we describe in detail how we implement the
ARAT. Our research group perform objective measurements
of the ARAT using a variety of sensors. For this paper, we
focus on Test1 of the Grasp Subtest which is one of the
nineteen in the ARAT suite of movement tests. This test
involves the grasping of a wooden block which is 10 cm3 in
size and moving it from a specified point directly to a target.
The ARAT specifies this as item 1, but we will refer to this as
the Cube in the rest of this paper.

Since our last paper[9], we conducted more extensive pre-
trial tests and are in the midst of collecting data from actual
patients. A further development besides the set of Intersense
406 FSR resistive sensors for force measurement used earlier
in the Cube, was another set embedded into a table and a
platform as shown in Fig. 2. This includes a sensor built into
the backrest of a chair and this new set used for auxiliary
measurements. Targets were placed over the sensors in the
table assembly. The horizontal distance from the lower
sensors to those on the platform was 0.5 m and the sensor on
the shelf was 0.25 m from the table as seen in Fig. 2. The
sensors were connected as described in the Intersense user
manual [12]. Now, two Microchip micrcontrollers were used
as Analog to Digital converters as well as data concentrators
to transfer data from the two sets of  sensors to a workstation
via a serial link. The Freescale MMA7260 3-axis
accelerometer was used for acceleration measurements in the
Cube only and set to a ±1.5g range with a nominal 0.8V/g
sensitivity.

The two sets of serial data were streamed into a DTech
DT5070 four serial port to USB concentrator which allows a
workstation to receive data over virtual serial ports. The
sensor readings are taken at a rate of 30 samples/sec so that a
maximum frequency of 15 Hz can be reliably recorded which
is sufficient for hand tremor, as discussed in Section 2. We
used a wired connection for this round of experiments.  A
block diagram of the entire system is shown in Fig. 1.
3.1      Test subjects and patients
In order to prepare for data collection of patients, we used
healthy subjects to characterise normal movements and also
to simulate movement disorders caused by stroke, which are
tremor and dystonia. In this way we are able to compare the
movements of a healthy subject and what may happen if they
develop movement disorders, which will be very unlikely with
patients. We had five healthy subjects and assessed their
movements,  which will be classified and discussed in the
next sub-sections. The four sets of movements are repeated
for five times for each person, giving a total of 100 sets of
data. The test subjects were briefed as to what constitutes
dystonia and tremor and to reproduce them to the best of their
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(1)

ability. Dystonia was simulated by not attempting to keep the
Cube upright during movements. Tremors were simulated by
stiffening the forearm muscles and attempting to shake the
hand, which  causes involuntary movement in the hands.

Additionally, we are in the process of collecting data with
actual patients who have had a history of stroke and
undergone rehabilitation. We perform a preliminary study on
two of them. We now briefly describe the possible motions of
the Cube in the ARAT as manipulated by a person.

3.2      Normal grasp and move
In Fig. 2 we see the Cube being grasped by a right handed
person moving it from the lower, hand silhouette to the higher
black target, the trajectory shown by a broken line. This
action has to be completed in a given time. The Cube is held
upright and the motion is to be what a healthy person would
exert without undue duress. We would expect this task to be
completed smoothly, with a minimum of energy. In Fig. 2,
note that the non-grasping (left) hand is used as support, so
the force exerted on the table can also provide useful data for
assessment.
3.3      Skewed grasp and move
In this type of grasp, we consider loss of muscle function that
prevents the Cube from being held upright. Rather than use
the term tilt, we use SKEW as this denotes a sense of
imbalance when executing this type of movement.
3.4      Grasp and move with tremor and/or skew
When the muscles are struggling to keep the Cube in the air,
the muscles may tense up and voluntary control is diminished,
resulting in tremor. Depending on the nature of the disorder
there may also be a skewed grasp on the Cube as well. Thus
we have for a subject, four sets of data representing the
presence or absence of tremor and/or skewed grasp.
4 SINGULAR SPECTRUM ANALYSIS APPROACH
Singular Spectrum Analysis is a recent subspace analysis
method which works best for single channel analysis. SSA
easily separates signals out into trends, periodic data and
noise. As mentioned in Section 2, SSA decomposes the
signals based on its values. The process has two main phases
which are subdivided into four steps. In the decomposition
step, Singular Value Decomposition (SVD) is used although
other methods like Principal Component Analysis and 
Independent Component Analysis may be incorporated [13].
This is applied to a time series of data x(i) = {x(1), x(2),...,
x(N)} which has N observations and represented by x. We
adopt the formulation in [14] which is geared towards signal
processing.
Step 1 Decomposition-Embedding
A window of length L is moved over the time series one
element at a time to produce a set of vectors

xi = [x(i) x(i+1)...x(i+N-L)]T for i 0 Z : i 0 {1,2...L} where Tdenotes the transpose operator. 
By concatenating all L vectors columnwise, we obtain the

trajectory matrix (with a unitary delay) 
X = [ x1 x2 ...xL ]

where X is a N-L+1 by L matrix and is also known as a
Hankel matrix with its anti-diagonals having the same value.

Step 2 Decomposition-Singular Value
Using SVD on X, the sorted eigenvalues and right singular
eigenvectors of XTX respectively λi and vi are computed,together with ui which are the left singular eigenvectors - ofXXT.
Step 3 Reconstruction
By standard linear algebra, X can be reconstituted by:

X = ui vi
T 

where each ui vi
T is called an eigentriple and is a rank-1

matrix.
Step 4 Reconstruction- Diagonal averaging
To obtain a reconstructed time series x̂i which is anapproximation to the original xi, we may express theprocedure in the following form:

x̂i = D !1 Y i v i
where the diagonal N × N matrix D has as its elements a series
of integers dii 0 Z : ii 0{1,2...L} {L,N!2*(L+1)} {L...,2,1} andthe matrix Y i is formed as in (1) from an auxiliary time series
yi of length N consisting of the eigenvector ui padded withzeros 

yi(t) = {ui(1), ui(2),..., ui(N!L+1)}{0,L} and 
Yi = [ yi

1 yi
2  ...yi

L ] 

Fig. 1.  Hardware block diagram of Cube and table/chair
embedded sensor system. Dotted lines indicate optional portions.

x

y
z

   Fig. 2. Cube oriented in the NORMAL position. The Ideal path
of object, compared to actual path taken is shown. Left hand is
placed on the table sensor and used as support. Two sets of force
sensors are used, one in the Cube, and another in the table
assembly.
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where yi 1 = [ui(1), ui(2),..., ui(N!L+1)}{0,L}]T     yi
2 = [0 ui(1), ui(2),..., ui(N!L+1)}{0,L-1}]T and so on.

In concatenating the vectors yi , it can be seen that Yi is aToeplitz matrix. This procedure gives a reconstructed signal
x̂i corresponding to the ranked eigenvalue λi and indicates theamount of contribution of x̂i to the original signal. In manyinstances, various  x̂i can be grouped together for analysis.

5 RESULTS
Here we discuss some initial results and show how the design
of the sensors help us to interpret the readings obtained. This
is followed by an analysis of the smoothness of movement.  
5.1      Qualitative results
In Fig. 3 we show the waveforms obtained for a SKEW
movement. They  yield detailed insights into the assessment
which we believe cannot be obtained in any other way. First
is that a patient may drop the Cube, by releasing it before
placing it on the upper table. This is shown in Fig. 3 where
we note that contact was made with the bottom face before
the Cube was released. Second is that the grasped surface
shows  peaks when just picked up and just before releasing.
The peaks show concentration on the task performed and
describes what Flatt [15] refers to as the “power” grasp.
However once the Cube is firmly grasped, the transport phase
uses the “precision” grasp which does not use so much force.
Note that at the start time of data capture and considering the
force plot, the lines with ‘x’ and ‘.’ markers have values that
are close to zero. These are the surfaces which the hand will
grasp. The  non-marker line represents the force exerted by
the weight of the Cube as it rests on a surface.

Thirdly, the signals given by the bottom sensor was also very
useful in acting as a cue as to when the Cube was lifted which
signalled the start of a movement and also when it ends.
While this was clear cut for the healthy subjects, some of the
patients had problems disengaging the Cube from their grasp
at the end of the move. These extraneous signals were easily
detected and removed in the course of analysis using this cue.
Fourthly, an important result was that since the ARAT is a
timed test, the period when the Cube is lifted can be
automatically and precisely measured, and used as part of the
of an assessment.

5.2      Computational results
In the course of our earlier work [9], we resorted to using
frequency domain measures with a measure of success in an
early prototype of the Cube in a limited experiment. However,
with more data, this approach did not yield good results with
the spectrum becoming very cluttered. 

In resorting to using SSA on the accelerometer signals in
Fig 4, we note the reconstructed components of the first five
largest eigentriples have nicely discernible waveforms in the
right column, even if the original signals in the left column are
somewhat noisy. We used a window size of 28 to
accommodate the shortest time series in our dataset although 
the average length of the time series was about 50, which
corresponds to a movement time of around 1.65 seconds at a
sample period of 33 milliseconds.

In SSA decomposition, the noisy part of the waveforms are
consigned to higher eigentriples which are not shown here.
Next, in Fig. 5 we show a comparison plot between that of a
healthy patient simulating a move with tremor and skew in the
left column and that of an actual patient on the right column.

We observe that in the second plot which represents the y or
vertical axis, and the second eigentriple, marked with a green
‘o’ gives a good indication of the tremor movement. We
denote this signal as Y2 and note that it is a smoother
waveform and thus would produce less spectral artifacts. This
is an application of SSA for data smoothing. As an

Fig. 3. Skew motion - note the force plot where the cube is
dropped rather than placed in the top plot. In the lower plot, the tilt
from the vertical is indicated.

Fig. 4. Plots of accelerometer outputs of a healthy subject in the xyz
directions in the left column. Right column has plots of the reconstructed
signals using the first 5 eigenvalues for each of the accelerometer outputs.
The y-axis is vertical.

Fig. 5.  Plots of the reconstructed waveforms for a healthy subject performing
a tremor and skew movement compared with that of an actual patient on the
right.
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exploratory step, we  perform an analysis on Y2 in the
following way:
i) remove Direct Current (DC) components of 0 Hz
ii) perform a Fourier Transform
iii) sort the amplitudes
iv) select the frequency corresponding to highest amplitude
v) for each subject, partition the data into those with and

without tremor
v) remove 10% of the outliers
vi) obtain the mean frequency for both classes of movement
The outlier removal step comes about because of the
variability in the execution of the simulated moves. We used
a figure of 10% for removal as a reasonable rule of thumb. In
Table 1, we show a portion of the results. The Trial ID is
formulated as SN_MM_T where S is H/P for healthy subject
and patient respectively, MM is the movement type, NM for
Normal, TS for Tremor and Skew (other two not shown) and
T is the trial number, 1 to 5.
Table 1 The frequencies corresponding to the components
with the largest amplitude for the eigentriple Y2 of the
selected trials.

Trial ID Frequency of largest
amplitude of YF2 (Hz)

H1_NM_1 1.13
H2_SK_1 0.88
H3_TR_1 6.11
H4_TS_5 6.84
P1_TS_1 2.24
P1_TS_2 1.18
P2_TS_1 1.45
P2_TS_1 1.85

In considering the entire data set, we are able to obtain a
mean frequency of 1.1 Hz with a standard deviation of 0.5 
for the movements without tremor, namely the NORMAL and
SKEW moves and 4.1 Hz and a deviation of 2.4 for those
with tremor which are the TREMOR and TREMOR/SKEW
moves. This may be interpreted that as healthy people
perform normal movements, they are generally smoothly
executed. However with simulated tremor, the execution of
the motion requirement is subject to interpretation and thus
can vary. In any case, with this information, we can see that
except for P1_TS_2, stroke patients have a borderline tremor
condition when moving the Cube.

6 CONCLUSIONS
In summary, we have put the case for instrumented objects to
be used in standard assessments in rehabilitation in Sec. 2.
The benefits were shown in the greatly enhanced information
obtained from force sensors about a person’s grasp and
motion in four ways viz., being able to distinguish the various
phases of a movement, the difference between placing and
dropping an object, often by scant milliseconds and precisely
demarcating the relevant portions of data in a trial and thereby
its duration.

In highlighting the pitfalls of using data decomposition
methods using predetermined basis functions, we saw that
SSA produces readily interpretable results which can then use

traditional analyses. Exploratory analyses indicate that using
one axis of an accelerometer, we can detect some tremor in
patients.

Future work will involve tridimensional analyses,
analyses of SKEW and incorporation of force data for a more
robust determination and characterisation of movement
disorders as well as comparison with other signal analysis
approaches.
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