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ABSTRACT

In this paper, we present a novel quickest detection scheme
to sequentially detect the emergence of an event with the
help of multiple sensors. In the proposed scheme, we exploit
the fact that the observations of the spatially proximal sen-
sor nodes are highly correlated due to correlated shadowing
effects. However, we will see that when it comes to infer
the spatial correlation, the estimate of the spatially structured
covariance matrix is not feasible as the proposed quickest de-
tection scheme is a recursive method and operates with single
sample. Hence, we propose to model the spatial covariance
structure by using the a-priori information about the locations
of the sensors. Moreover, the proposed scheme also takes into
account a scenario where only a subset of sensors are affected
by the event’s signal. Therefore, it takes into account both the
exploitation of the spatial structure and the selection of the
subset of sensors in the process of detection. Both analytical
and numerical results are developed for the mean detection
delay, showing important advantages.

Index Terms— Spatial Correlation, CUSUM, Wireless
Sensor Network, Likelihood ratio.

1. INTRODUCTION

Most of the detection approaches in wireless sensor network
(WSN) are block-based in the sense that the sensor nodes take
a block of samples to decide on the activity state of an event.
The main goal of these block-based detection schemes is to
maximize the detection probability subject to constraints on
the false alarm probability. However, while detecting abrupt
changes due to an event, other than the probability of detec-
tion, the WSN should be able to detect the changes as quickly
as possible. For example in cognitive radio, the secondary
users need to detect and quit the frequency band as quickly
as possible if the corresponding primary radio emerges [1].
In such dynamic applications, the multi-sensor should con-
tinuously observe the region to detect the event quickly as
possible based on the change in the received observations.

This work was supported in part by the Spanish Ministry of Science and
Innovation project TEC 2011-28219, and by the Catalan Government under
the grant FI-DGR-2011-FIB00711.

Therefore, a detection framework is required that minimizes
the detection delay for a certain level of false alarm.

The above discussion leads us to the concept of multi-
sensor sequential change detection [2, 3]. A detailed discus-
sion on the multi-sensor sequential (quickest) detection can
be found in [1, 4, 5]. In sequential change detection methods,
the well-known Page’s cumulative sum (CUSUM) algorithm
has been shown to be optimal in the sense of minimizing the
detection delay while maintaining an acceptable level of false
alarm [1, 2]. Moreover, CUSUM algorithm has been previ-
ously adopted for the collaborative spectrum sensing by as-
suming that the observations from multiple sensors are inde-
pendent and identically distributed both in time as well as in
space [1, 3, 6]. However, while observing the signal emitted
from a single event or due to correlated shadowing effects the
observations of spatially proximal sensors are highly corre-
lated with the degree of correlation increasing with decreas-
ing inter-node separation [7, 8]. To the best of our knowledge
the previous work on multi-sensor quickest detection either
ignores the presence of the mutual correlation in the received
observations or consider it as a deleterious effect [9]. How-
ever, this spatial correlation is a feature that can be used for
detection since the noise processes at different nodes can be
safely assumed statistically independent.

Taking into account the above discussions, we formulate
the Multivariate Cumulative SUM( MCUSUM) algorithm by
exploiting the spatial correlation structure. Consequently, the
proposed scheme also considers the fact that due to the limited
coverage of the signal emitted from a weak intensity event,
just a subset of sensors (in the form of a spatial cluster) are
able to receive power levels enough for reliable detection [10].
While considering the spatial correlation, it is required that
the information regarding the spatially structured covariance
matrix should be available. The MCUSUM is a recursive
method that operates with single sample, hence, the estima-
tion of the unknown covariance matrix is not feasible [2]. In
order to overcome this hurdle we propose to model the spatial
covariance structure by using the a-priori spatial information
based on the known sensor-to-sensor distances. Similarly, to
observe the change point and ignore noisy observations from
the unaffected sensors (i.e. sensors that receive the event sig-
nal with negligible power), the proposed detection method se-
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lects observations of the affected sensors(subset). Finally, to
asses the performance of the proposed scheme, we analyze
the expression of the mean detection delay by adopting the
asymptotic results given in [11]. Simulations results are in-
cluded to verify these analytical expressions.

The remaining paper is organized as follows. The prob-
lem formulation and the proposed system model are covered
in Section 2 and 3, respectively. The proposed collaborative
quickest detection scheme is explained in section 4. The per-
formance analysis is presented in Section 5 and numerical re-
sults are shown in Section 6. Finally, conclusions are drawn
in Section 7.

2. PROBLEM FORMULATION AND ASSUMPTIONS

We consider an infrastructure-based WSN where in order
to observe the event, K sensors continuously measure their
total received power (in dBm). They normalize the mea-
surements by subtracting the the respective mean noise pow-
ers(in dBm, assumed to be known) as in [12], and relay the
normalized measurements {xi}Ki=1 (in dBm) to the fusion
center. Under H0, the power at the output of the i-th local
energy detector is simply the sum of noise and interference
powers. Consequently, due to the effect of the interfer-
ences, the total noise power can be modeled as a independent
log-normally distributed random variable with variance σ2

ni

(assumed to be known) [12]. Hence, under the null hypoth-
esis {xi}Ki=1 (in dBm) are independent Gaussian distributed
random variables with zero means and variances

{
σ2
ni

}K
i=1

.
Under H1, the total power at i-th sensor is the sum of the
event signal power(modeled with log-normal random vari-
able having variance σ2

si , that quantifies shadow fading) and
the noise power1. Given this, the total received power un-
der H1 is equal to the sum of two independent log-normally
distributed random variables and the sum can be approxi-
mated as log-normal random variable [13]. Based on this
information, given H1, the measurements {xi}Ki=1 (in dBm)
are assumed to be Gaussian distributed with means µi ,
E [10log10 (1 + SNRi)] and covariances σsiσsjρi,j + σ2

ni

where ρi,j quantifies correlation of shadowing between sen-
sor i and j [12]. Having said this, at time instant n, the
observation vector received at the fusion center can be repre-
sented as x (n) ,

[
x1 (n) x2 (n) · · · xK (n)

]T
and

the signal model can be written as:
H0 :x (n) = w (n) ,

H1 :x (n) = s(n) + w (n) ,
(1)

where s(n) ∼ N (µs (n) ,Σs) with i-th element of the mean
vector µs (n) is µi and i, j-th element of Σs is σsiσsjρi,j .
Similarly, w (n) ∼ N (0,Σ0) contains noise with Σ0 =
diag

{
σ2
n1

σ2
n2
· · · σ2

nK

}
. Hence, under H0, x (n) ∼

N (0,Σ0) and underH1, x (n) ∼ N (µs(n),Σ1) with Σ1 =
Σs + Σ0.

1We are implicitly assuming that the noise includes interference and mod-
eled as a independent log-normally distributed.

3. SELECTION OF ACTIVE SENSORS

We assume that the event will appear at an unknown ran-
dom position and the signal power emitted by the event de-
cays isotropically and only a subset of sensors are affected
due to it [10]. This observation allows us to distinguish be-
tween the so-called active (affected) and inactive (unaffected)
sensors, respectively. For an improved detection performance
intuition suggests that the detection rule should rely on the
observations of the L ≤ K active sensors, thus discarding
the observations from the rest of inactive sensors. Keeping
this in mind we are in front of a detection problem where it is
convenient to use a rank-reduced version of the signal model
in (1). To do so, we need to select the observations of the L
most relevant sensors. Herein, to simplify the mathematical
exposition, we assume that the received signal vector x (n) is
already ordered such that the first L samples of x (n) corre-
spond to the L active sensors and the remaining Lc samples
consist of only noise correspond to the inactive sensors [14].
We believe that in practice, this assumption can be easily re-
laxed. For example the signal samples (in dBm) in x (n) can
be sorted by ordering the vector x(n) in descending order.
Further details about such a process can be found in [9, 14].
Similarly, another way to relax the assumption is that the lo-
cal sensors weight themselves locally based on their received
powers and the fusion center sort the observations based the
provided weights. Adding further, the sensors can even per-
form local selection by comparing their received powers with
some predefined threshold and the qualified sensors declare
themselves as active sensors. Keeping these facts into consid-
erations the rank-reduced signal model can be written as:

H0 : x (n) = w (n) ,

H1 : x (n) = sL (n) + w (n) ,
(2)

where sL (n) = HLs(n) is an ordered vector that has the
first L non-zero signal elements corresponding to the received
signals at the L active sensors and

HL =

[
IL 0L×(K−L)

0(K−L)×L 0(K−L)×(K−L)

]
(3)

Hence, we have sL (n) = N
(
HLµs(n),HLΣsH

T
L

)
. For

simplicity and without loss of generality, we assume that
under H0 the variables in w (n) are I.I.D, therefore σ2

ni
=

σ2
nj

= σ2
0 such that x (n) = N

(
0, σ2

0I
)
. Then under H1 we

have x (n) ∼ N
(
HLµs (n) ,HLΣsHL + σ2

0I
)
. The detec-

tion problem (2) says that due to the emergence of an event
signal, changes occur both in the mean vector and covariance
structure. Therefore, the quickest detection technique should
be capable of simultaneously monitoring the mean as well
as the covariance matrix. Furthermore, the proposed signal
model also takes into account the rank-reduction of the signal
covariance matrix by introducing HL in (2). Therefore, in
addition to the spatial information, the rank-reduced signal
model (2) will indeed allow us to benefit from an equivalent
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signal to noise ratio gain due to selection of the active sensors.

4. PROPOSED QUICKEST DETECTION APPROACH

In this section we present the proposed quickest detection
scheme. In order to proceed we define a time n , N as the
the discrete-time at which the change (occurs at time Nd) is
detected. If N > Nd then the detection delay is δ = N −Nd.
Similarly, if N < Nd, a false alarm has occurred with the
average time between the false alarm is being TFA = E0 [N ],
where E0 denotes the average time taken before the change
occurs (i.e. event emerges). Similarly, the worst case detec-
tion delay is defined as:

E1 [N ] = sup
Nd≥1

(
esssup E

[
N −Nd | N ≥ Nd, {x (n)}Nd

n=1

])
,

(4)
where esssup denotes essential supremum. Under the Lor-
den’s criterion, the objective is to find the stopping rule that
minimizes the worst-case delay while maintaining the time
between the false alarms larger than a certain threshold,
TFA ≥ λ [1]. An alternative approach is to minimize the
average detection delay,

T∆ = sup
Nd≥1

ENd
[N −Nd | N ≥ Nd] , (5)

which is asymptotically equivalent to the worst case delay [1].
Now, the algorithm that finds the minimum T∆ in this prob-
lem is the Page’s CUSUM Test (PCT) [1, 6, 3]. The stopping
time of the PCT is determined as:

T (q) = inf {n : Cn ≥ q} , (6)

where q is a pre-determined threshold [2]. The cumulative
statistic Cn can be recursively calculated for n ≥ 1 as follow:

Cn = max (Cn−1, 0) + Ln (x) , (7)

where C0 = 0, Ln (x) , loge
f1(x(n))
f0(x(n)) and fh (x (n)) with

h = 0, 1 are likelihood functions under the alternate hypothe-
ses. Observing (7) we can see that the CUSUM algorithm
finds the first n for which Cn ≥ q > 0.

In the proposed MCUSUM based on the signal model (2),
not onlyNd but also L is unknown, hence, it involves a nested
likelihood ratio. Taking into effect these consideration, the
Log-likelihood ratio statistic to be used in (7) is given as:

Ln(x) = max
1≤L≤K

L∑
l=1

Log

{
Dl

exp
(
− 1

2 x̃T (n)Φlx̃(n)
)

exp
(
− 1

2xT (n)Σ−1
0 x(n)

)} ,
(8)

where Dl =
√

detΣ0/
√

detΣl,1, Φl = Σ−1
l,1 with Σl,1 =

HlΣsH
T
l +σ2

0I, and x̃(n) = x(n)−µl,s(n) with µl,s(n) =
Hlµs(n).

Now the recursive test (7) needs input in the form of
Ln (x) (8) at every time instant n, the estimation of the un-
known covariance matrix Σl,1 is not feasible. Therefore, we

present a mechanism to find the unknown covariance matrix
Σl,1 by assuming locations of nodes are a-priori known [12].
In order to do so, first we assume the shadowing effects at
different sensors have similar variances as σ2

si = σ2
sj = σ2

s ,
then we can write HlΣsHl = σ2

sHlΨHT
l with Ψ as the

correlation matrix having elements ρi,j for i, j = 1, 2, ...K.
Similarly, the shadowing parameter σ2

s is an experimentally
obtained parameter that is dependent on the propagation en-
vironment and it is assumed to be known [12, 15]. Morover,
in (8) the matrix Φl can be considered as a concentration
matrix or a precision matrix. The elements of the precision
matrix can be interpreted in terms of partial correlations and
partial variances. Partial correlation measures the degree of
association between two random variables. In our problem,
we model this association with the help of correlation model
in [15] by exploiting the fact that nodes locations are known.
Hence, the correlation between ith and jth sensor can be mod-
eled as ρi,j = e−adi,j [12, 15]. It is mentioned in [15], that
for urban areas, at 1700 MHz a ≈ 0.12 and for suburban
areas at 900MHz a ≈ 0.002. Moreover, in (8) we can write
x̃T (n)Φlx̃(n) = Tr[Φlx̃(n)x̃

T (n)]. Keeping all these into
effect, we can deduce that the statistic (8) indeed matches the
expected covariance matrix Σl,1 with the received covariance
matrix x̃(n)x̃T (n) as an additional detection metric jointly
with the signal energy. In other words, it takes into account
both radio correlation and the reliability of information by
selecting the active sensors.

Finally, the proposed MCUSUM statistic is achieved by
putting Ln(x) from (8) in (7). The proposed quickest detec-
tion can be interpreted as a two dimensional MCUSUM as it
operates with "max" operation both in the space and time. At
every received observation vector it selects the active sensors
and exploits the spatial structure of the received observations
by matching the received covariance matrix with the modeled
one, as explained in the previous paragraph.

5. PERFORMANCE ANALYSIS

The performance of the quickest detector is normally defined
by TFA and T∆ [3, 11]. For a particular detector larger TFA

and smaller T∆ means better detection performance. Con-
sequently, to explain the advantages of sensor selection and
exploitation of spatial structure, herein, we assume the case
where the active sensors have been perfectly identified. Keep-
ing this in mind, based on the well known result by Lorden
[11], the expressions for the asymptotic TFA and T∆ are given
as [3]:

TFA = E0 [N ] ≥ eq as q →∞ (9)

and
T∆ = E1 [N ] ∼ q

D (fH1 ‖ fH0)
as q →∞, (10)

where for a specific L, fH1 (x) and fH0 (x) are the likelihood
functions of the signal model (2) underH1 and underH0, re-
spectively. Similarly, D (fH1

‖ fH0
) = E1 [Ln (x)] is the

3
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Kullback-Leibler Divergence(KLD) between the two densi-
ties. Note that E1 [Ln (x)] is always positive and E0 [Ln (x)]
is always negative [2]. The asymptotic results from Lorden’s
approach can be interpreted as for a constant TFA or q, T∆

is inversely proportional to the KLD. It means that the higher
is the value of D (fH1 ‖ fH0), the smaller will be T∆. The
KLD between the two densities is defined as:

D (fH1
‖ fH0

) =

ˆ
fH1

(x) log
fH1 (x)

fH0
(x)

dx. (11)

In order to analyze D (fH1 ‖ fH0) of the proposed scheme,
let us suppose the exact number of the active sensors is L′,
then the solution to the integral (11) is [16, Chapter 10]:

D (fH1 ‖ fH0) =
1

2
log

det (Σ0)

det (ΣL′,1)
+

1

2
Tr
(
ΣL′,1Σ

−1
0

)
−1

2
Tr
(
ΣL′,1Σ

−1
L,1

)
+

1

2
Tr
(
Σ−1

0 µL′,s(n)µ
T
L′,s(n)

)
,

(12)

where ΣL′,1 = HL′ΣsH
T
L′ +σ2

0I and ΣL,1 = HLΣsH
T
L +

σ2
0I. Similarly, based on the assumption that the number of

active sensors L′ is perfectly known, we have the following
two cases.

Case 1. L = L′: Number of active sensors are perfectly se-
lected.

D (fH1 ‖ fH0) =
1

2
log

det (Σ0)

det (ΣL′,1)
− K

2

+
L′

2

σ2
s

σ2
0

+

 1

2σ2
0

L′∑
i=1

µ2
i,s

 . (13)

Case 2. L = K, Active sensors are not selected

D
′
(fH1

‖ fH0
) =

1

2
log

det (Σ0)

det (ΣK,1)
+
L′

2

σ2
s

σ2
0

−

1

2
Tr
(
ΣL′,1Σ

−1
K,1

)
+

 1

2σ2
0

L′∑
i=1

µ2
i,s

 , (14)

where ΣK,1 = Σs + σ2
0I.

Lemma 1. D′
(fH1

‖ fH0
) ≤ D (fH1

‖ fH0
) and equality

prevails when L′ = K.

Proof. To compare (13) and (14) and analyze the impact
of only sensor selection, we suppose Σs = σ2

sI in both
of the equations. Therefore, Tr

((
HL′ΣsH

T
L′ + σ2

0I
)
Σ−1
K,1

)
=

L′σ2
s/
(
σ2
s + σ2

0

)
+Kσ2

0/
(
σ2
s + σ2

0

)
, log {det (Σ0) /det (ΣK,1)} =

Klog
(

σ2
0

σ2
s+σ

2
0

)
and log

{
det (Σ0) /det

(
HL′ΣsH

T
L′ + σ2

0I
)}

=

L′log
(

σ2
0

σ2
s+σ

2
0

)
. Putting these values in (13) and (14) we can

easily deduce that D′
(fH1 ‖ fH0) ≤ D (fH1 ‖ fH0) for the

case K ≥ L′.
By using the results of this lemma and the Lorden’s

asymptotic approximation (10), it is clear that by using sen-
sor selection jointly with a-prior spatial information indeed
enhances the performance of the MCUSUM.

6. NUMERICAL RESULTS

For the analysis we useK = 30 sensors uniformly distributed
in a square field. The event appears at a random location that
emits power P0 = 3dB. To comply with the discussions in Sec-
tion 3, we set the coverage of the event’s signal such that an
unknown subset of K sensors receive non-zero powers from
the event. Consequently, we fix σ2

0 = 2, σ2
s = 1.5. The be-

haviour of the adaptive multivariate CUSUM statistic Cn for
the three schemes shown in Figure 1. These results show the
change in the log-likelihood ratios for the three schemes be-
fore and after the emergence of the event. For all three cases
the curves of MCUSUM statistics show sudden increase right
after the change in the distributions occurs at n = 50. We can
also see that for a certain value of q, the algorithm that uses
jointly spatial information and sensor selection has the quick-
est response to the change created by the event’s signal. In
Figure 2, with the help of monte-carlo simulations we present
the normalized histograms of the detection delays in respond-
ing to the change occurs. These histograms also shows that
the proposed sequential detection scheme based on the spatial
information performs better. The results in Figure 3 confirm
the above numerical results where we plot the average detec-
tion delay versus the changing value of the threshold q. As
asymptotically TFA is exponential function of the threshold
q, increasing q also means increase in TFA. In Figure 3, we
can see that increase in q (or TFA ) results in increase in the
average detection delay times of the three schemes. Similarly,
it can be seen that the increase in the response time of the pro-
posed detection scheme is less than the scheme that assume
no spatial structure. Moreover, using observations of only ac-
tive sensors further increase the performance.

7. CONCLUSION

We have proposed the multivariate CUSUM based detector
for the collaborative detection with the help of multi-sensor.
The proposed detector exploits the spatial correlation struc-
ture and selects the important sensors in the detection process.
The proposed scheme has been analyzed analytically based
on the asymptotic mean detection delay. Simulation results
have been drawn to verify these analytical expressions. The
results show that comparatively the proposed scheme consis-
tently performs better.
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Fig. 1. Typical behaviour of the MCUSUM statistic Cn
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