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ABSTRACT

In this paper, a new method for simultaneous range and
bearing estimation for buried objects in the presence of an un-
known colored noise is proposed. We propose a method based
on MUSIC (MUltiple SIgnal Classification) which evaluates
the time delay of arrival (TDOA) of the reflection of an emit-
ted signal on objects. This is achieved by exploiting the wide-
band of the signal and the assumption that the emitted signal
spectrum is known. The bearing and the range objects are ex-
pressed as a function of those TDOA. The proposed algorithm
is compared with a classical coherent signal subspace method
on experimental data recorded during underwater acoustic ex-
periments.

Index Terms— Source localization, wide band signals,
time delay estimation, high resolution algorithm, correlation

1. INTRODUCTION

During the past years, many high resolution algorithms
(HRA), such as Multiple Signal Classification (MUSIC) [1]
or estimation of signal parameters via rotational invariance
techniques (ESPRIT) [2], have been developed in direction
of arrival (DOA) estimation of multiple sources localization.
These algorithms use the spectral matrix with the assumption
that the signals impinging on the array are not fully correlated
or coherent. Under uncorrelated conditions, the source spec-
tral matrix is full rank, which is the basis of the eigendecom-
position. So they provide super resolution DOA estimation
when sources are not or lowly correlated. In practice, signals
are correlated due to multipaths, reflexions, ... The correla-
tion significantly degrades the performance of the traditional
high resolution methods, diminishing the source spectral ma-
trix rank under the number of sources, making localization
erroneous. To handle the problem of correlated signals, a va-
riety of methods [3–11] have been proposed in the literature
during the last decades. Although many different methods are
available, their principle can be roughly categorized into two
classes: 1. spatial smoothing techniques, for the case of a uni-
form linear antenna (ULA), based on a preprocessing scheme
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that divides the total array into overlapping sub-arrays and
then averages the sub-array outputs spectral matrices to form
the spatially smoothed spectral matrix [3] but inducing a high
number of sensors. 2. frequential smoothing techniques,
which are achieved by the number of frequencies contained
in the frequency band. Many methods have been developed
for the wide-band signals analysis [12–14]. They are grouped
into two categories: Incoherent signal subspace methods and
coherent signal subspace methods. Incoherent signal sub-
space methods suffer from a significant computational load
and a lack of robustness. The coherent subspace methods
transform the subspaces in a predefined subspace by the fo-
cusing matrices.
Other methods are proposed, in [15] only quasi-stationary
signals are considered and in [16] the test of orthogonality of
projected subspaces (TOPS) is extended for better decorrela-
tion.
In this paper, the proposed method for solving the problem
of buried objects localization, exploits advantage of the wide
band of these signals. The performance of the proposed al-
gorithm is evaluated using several numerical simulations and
real-world signals recorded during an underwater acoustic
experiment.

Throughout the paper, the superscript ”T ” is used for
transpose operation, ”H” is used for transjugate, E[.] denotes
the expectation operator, ||.||F denotes Frobenius norm and
”∗” denotes complex conjugate.

2. PROBLEM FORMULATION

Consider a transmitter that generates a wideband signal with
an angle θinc. The incident wave will propagate and be re-
flected by P objects. For example, located in the seabed of a
tank filled with sand and water (see Fig. 1 P=1). An array
composed of N sensors receives the P reflected and corre-
lated signals (P < N). The received signals are grouped
into a vector r(f), which is the Fourier transform of the array
output vector at frequency bin f and is written as [5]:

r(f) = A(f)s(f) + n(f) (1)
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Fig. 1. Configuration of the sources

where A(f) = [a(f, θ1, ρ1),a(f, θ2, ρ2), ...,a(f, θP , ρP )],
matrix of dimensions (N × P ) is the transfer matrix of the
source-sensor array systems with respect to some chosen
reference point with (θp, ρp) the bearings and ranges of the
objects, s(f) = [s1(f), s2(f), ..., sP (f)]

T is the vector of
signals, n(f) = [n1(f), n2(f), ..., nN (f)]T is the vector of
noise. We define the spectral matrix by:

Γ(f) = E[r(f)rH(f)] (2)

The noises n(f) and the source signals s(f) are assumed un-
correlated, thus the spectral matrix Γ(f) can be written:

Γ(f) = A(f)Γs(f)A
H(f) + Γn(f), (3)

where Γs(f) = E[s(f)sH(f)] is the spectral matrix asso-
ciated to the object signals, Γn(f) = E[n(f)nH(f)] is the
spectral matrix of noises.

2.1. Usual Algorithm for Bearing and Range Estimation
of Buried Objects

Generally, the eigendecomposition of the spectral matrix
Eq.(3) is performed. Then the eigenvector matrix V =
[v1, . . . ,vN ] is separated into two matrices :
Vs = [v1, . . . ,vP ] corresponding to the P eigenvectors asso-
ciated with the P largest eigenvalues span the signal subspace
and the remaining N−P eigenvectors Vn = [vP+1, . . . ,vN ]
span the orthogonal space named the noise subspace.
Then, MUSIC algorithm exploits those N − P eigenvec-
tors to estimate the bearings and ranges of the waves as-
sociated with the narrow-band (at the chosen frequency f )
sources. The ranges and DOAs are estimated by taking the
local maximum points of the conventional spatial spectrum,
MUSIC(f, θ, ρ) = 1

||aH(f,θ,ρ)Vn(f)||F .
However, in the presence of P objects the MUSIC(f, θ, ρ)
algorithm can not solve all the P angles because the sig-
nals are correlated. To address this issue, all the information
contained in the wideband frequency (L frequency bins) of
the signals is used simultaneously to estimate the coherent
signal subspace at a chosen frequency f0 ∈ [f1, · · · , fL],
using P0 < P initial estimations of the bearings using the
beamformer method, which leads to obtain the P ranges and

DOAs, described by algorithm 1 [17].

Algorithm 1 Usual Algorithm for Bearing and Range Esti-
mation of Buried Objects

1. use the beamformer method to find an initial estimate
θ̂0k of θp, where k = 1, · · · , P0, with P0 ≤ P .

2. compute the initial values of ρk using geometrical as-
sumptions

3. for each frequency fl ∈ [f1, . . . , fL]

(a) estimate the transfer matrix Â(fl)

(b) estimate the spectral matrix Γ̂(fl) =
1

Nr

∑Nr
nr=1 rnr(fl)r

H
nr(fl), where Nr repre-

sents the number of realizations.

(c) estimate noise variance σ̂2(fl) =
1

N−P0

∑N
i=P0+1 λi(fl), where λi(fl) is the

ith eigenvalue of Γ(fl).

(d) calculate the spectral matrix of the sig-
nals reflected on the objects by Γ̂s(fl) =
(ÂH(fl)Â(fl))

−1ÂH(fl)× [Γ̂(fl)− σ̂2(fl)IN ,
where IN is the N × N identity matrix and use
SVD to obtain V̂s(fl),

4. compute the average of the spectral matrices Γ̄s(f0) =
1
L

∑L
l=1 Γ̂s(fl), where L represents the number of fre-

quencies and f0 is the center frequency of the spectrum
of wideband signals,

5. calculate Γ̂(f0) = Â0(f0)Γ̄s(f0)Â
H
0 (f0), using SVD

to obtain V̂s(f0),

6. for each fl, calculate Ts(f0, fl) = V̂s(f0)V̂
H
s (fl)

7. form the average matrix Γ̄(f0) =
1
L

∑L
l=1 Ts(f0, fl)[Γ̂(fl) − σ̂2(fl)IN ]Ts

H(f0, fn)
and calculate V̄n(f0) by SVD,

8. calculate the spatial spectrum of the MUSIC
method for bearing and range object estimation:
MUSIC(f0, θ, ρ) =

1
||aH(f0,θ,ρ)V̄n(f0)||F

,

9. The estimated bearings and ranges (θ̂p, ρ̂p) correspond
to the arguments of MUSIC(f0, θ, ρ) maxima.

2.2. Proposed Algorithm for Bearing and Range Estima-
tion of Buried Objects

The hereinbefore method is based on a spatial diversity model
and coherently focuses the wideband information (Γ(fl), fl ∈
[f1, · · · , fL]) into a single frequency Γ̄(f0).
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In this paper we want to address the issue of correlation in a
different way, by using more efficiently all information. We
propose a sensor-by-sensor model based on frequential diver-
sity, that estimate TDOA. The ranges and DOAs of the objects
are expressed as a function of those TDOA, using the spatial
diversity.
For a given sensor j, the Fourier transform of the observed
signal can be written as:

r̃(j) = ΛA(j)c(j) + ñ(j), j = 1, . . . , N (4)

where r̃(j) = [r̃(f1)(j), . . . , r̃(fL)(j)]
T is the vector of L

frequencies of the Fourier transform of the signal recorded
on sensor j, Λ = diag (s̃(f1)(j), . . . , s̃(fL)(j)), is the
diagonal matrix of the emitted signal Fourier transform,
c(j) = [c1(j), . . . , cP (j)]

T where cp(j) is a complexe
amplitude, ñ(j) = [ñ(f1)(j), ñ(f2)(j), . . . , ñ(fL)(j)]

T

is the vector of the noise Fourier transform, A(j) is the
(M × P ) transfer matrix of the source-jth sensor sys-
tem for the observed frequencies, whose column are the
steering vectors, A(j) = [a(τ1(j)), . . . ,a(τP (j))], a(.) =[
e−2iπf1(.), . . . , e−2iπfL(.)

]T
where τp(j) is the TDOA of

object p on sensor j.
MUSIC algorithm can be extended to estimate the TDOAs.
However, the correlation of the signals is still a problem.
Modified Spatial Smoothing Processing [18] estimate an un-
biased covariance matrix of the observation and reduces the
signal correlation. The spectrum is divided into K sub-bands
of M frequencies and averaged. The bearing and range of the
objects are functions of the TDOA. Algorithm 2 summarizes
the proposed method.

This method offers two main assets. Firstly it does not
require an initialization. Secondly the number of sensor N
is substituted by M . It means that the assumption P < N
is not mandatory any more and the proposed method could
be able to resolve indeterminate systems. Both methods are
compared in Fig. 2.
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signal spectrum

f1 fi fL

f1 fi fL

Γ(f1) Γ(fl) Γ(fL)

spatial covariance
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n
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f1 fi fL
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Fig. 2. Methods comparison

Algorithm 2 Proposed Algorithm for Bearing and Range Es-
timation of Buried Objects

1. for each sensor j

(a) divide the frequential observations into K over-
lapping sub-bands of M frequencies

(b) whiten the observation vector in each sub-band,
yk(j) = Λ−1

k r̃k(j), k ∈ [1, · · · ,K] where Λk

and r̃k(j) are respectively made of the corre-
sponding rows of Λ and r̃(j)

(c) compute Γ̂k(j) =
1

Nr

∑Nr
l=1 yknr(j)yk

H
nr(j)

(d) calculate Γ̄(j) = 1
2K

∑K
k=1 (Γk(j) + JΓ∗

k(j)J)
where J stands for the anti-diagonal matrix of
permutation that helps generating the observation
vector in the backward direction. Use SVD to ob-
tain V̄n(j).

(e) calculate the spatial spectrum of the MUSIC
method for TDOA estimation:MUSIC(τ) =

1
||a(τ)HV̄n(j)||F

, where V̄n(j) is the M−P eigen-

vector matrix of Γ̄(j).

(f) The estimated TDOA (τ̂k(j)) correspond to the
arguments of MUSIC(τ) maxima.

2. estimate the ranges and DOAs using the
so estimated TDOA assuming that τp,j =√

ρ2
p+((j−1)d)2+2(j−1)dρp sin(θp)

c where c is the
wave velocity.

3. EXPERIMENTAL SETUP: RESULTS AND
DISCUSSIONS

The studied signals are recorded during an underwater acous-
tic experiments in order to estimate the developed method per-
formance. The experiment is carried out in an acoustic tank
under the conditions similar to those in a marine environment.
The bottom of the tank is filled with sand. The experimental
device is presented in Fig. 3. The tank is topped by two mo-
bile carriages. The first carriage supports a transducer emit-
ter and the second supports a transducer receiver pilot by the
computer. This tank is filled of water with Wh = 0.5 m (Fig.
3) and its bottom is filled with homogeneous fine sand, where
three cylinder couples ((O3, O4),(O5, O6),(O7, O8)) and one
sphere couple (O1, O2), see Fig. 4) are buried between 0
and 0.05 m under the sand. The considered objects have the
following characteristics, where δ represents the distance be-
tween the two objects of the same couple and ∅a the outer
radius (the inner radius ∅b = ∅a − 0.001 m):

1. the 1st couple (O1, O2): spherical shells, ∅a = 0.3 m,
δ = 0.33 m, full of air,

3
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Fig. 3. Experimental tank

2. the 2nd couple (O3, O4): cylindrical shells, ∅a = 0.01
m, δ = 0.13 m, full of air,

3. the 3rd couple (O5, O6): cylindrical shells, ∅a = 0.018
m, δ = 0.16 m, full of water,

4. the 4th couple (O7, O8): cylindrical shells, ∅a = 0.02
m, δ = 0.06 m, full of air,

Fig. 4. Experimental Objects.

The objective is to estimate the bearing and range of the
sources during the experiment. The signals are received on
an uniform linear array. The observed signals come from
various reflections on the objects being in the tank. Gen-
erally the aims of acousticians is the detection, localization
and identification of these objects. In this experiment we
have recorded the reflected signals by a single receiver.
This receiver is moved along a straight line between posi-
tion Xmin = 50mm and position Xmax = 150mm with
a step of α= 1mm in order to create a uniform linear ar-
ray. We have measured eight times Ei(Oii, Oii+1) with
i = 1, . . . , 8 and ii = 1, 3, 5, 7. At first, the receiver horizon-
tal axis XX

′
is fixed at 0.2 m, we performed the experiments

E1(O1, O2), . . . , E4O7, O8) associated to the 1st, 2nd, 3rd

and the 4th couple, respectively. Then we performed the
other four experiments E5(O1, O2), . . . , E8(O7, O8) with
XX

′
fixed at 0.4 m. RR

′
is the vertical axis which goes

through the center of the fist object of each couple. For each
experiment, the transmitted signal had the following prop-
erties: pulse duration is 15 µs, the frequency band is, the
frequency of the band is [fmin = 150, fmax = 250] kHz and
the center frequency f0 is f0 = 200 kHz. The sampling rate
is 2 MHz. The duration of the received signal was 700 µs.
The obtained values of θ and ρ are given in Tab. 1. These
values confirm the efficiency of the proposed method.

Table 1. The expected (exp) and estimated (est) values of
range and bearing objects using usual method (UM) and pro-
posed method (PM)

E1(O1,O2) E2(O3,O4) E3(O5,O6) E4(O7,O8)

θ1exp( ˚ ) 20 23 33.2 32.4
ρ1exp(m) 0.3 0.24 0.26 0.26
θ2exp( ˚ ) 22 9.2 20 5.8
ρ2exp(m) 0.32 0.22 0.24 0.22

θ1estUM ( ˚ ) 20 23 33 32
ρ1estUM (m) 0.31 0.25 0.29 0.28
θ2estUM ( ˚ ) 22.5 9 20 6
ρ2estUM (m) 0.33 0.25 0.25 0.23
θ1estPM ( ˚ ) 20 23 33 32
ρ1estPM (m) 0.31 0.245 0.25 0.26
θ2estPM ( ˚ ) 22.1 8.95 20 5.9
ρ2estPM (m) 0.32 0.23 0.23 0.22

E5(O1,O2) E6(O3,O4) E7(O5,O6) E8(O7,O8)

θ1exp( ˚ ) −50 −52.1 −70 −51.6
ρ1exp(m) 0.65 0.65 1.24 0.65
θ2exp( ˚ ) −22 −41 −65.3 −49
ρ2exp(m) 0.45 0.56 1.17 0.64

θ1estUM ( ˚ ) −49 −52 −70 −52
ρ1estUM (m) 0.65 0.63 1.21 0.63
θ2estUM ( ˚ ) −22 −40 −65 −50
ρ2estUM (m) 0.44 0.53 1.2 0.63
θ1estPM ( ˚ ) −50 −52 −70 −51
ρ1estPM (m) 0.65 0.64 1.25 0.64
θ2estPM ( ˚ ) −22 −41 −65 −49
ρ2estPM (m) 0.45 0.55 1.2 0.64

4. CONCLUSION

One of the main targets of array processing is the estima-
tion of the parameters: DOAs of the buried objects and the
objects-sensors ranges. In this paper, we have proposed a
new localization algorithm to estimate both the ranges and
the bearings of objects. We developed a new organization and
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processing of the recorded data, aiming to use the frequen-
tial and spatial information more efficiently. By treating the
recorded signals sensor by sensor, the different TDOA of the
received signals are estimated. Then, by considering the spa-
tial evolution of the TDOA the object ranges and bearings are
obtained. This method could also work in a situation where
there is less sensors than sources. The proposed method per-
formance is investigated through scaled tank tests associated
with some cylindrical and spherical shells buried in an homo-
geneous fine sand. The obtained results are promising, show-
ing a better accuracy than for usual methods.
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