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NOISE ROBUST SPEECH RECOGNITION
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ABSTRACT

Studies from multiple disciplines show that spectro-temporal

units of natural languages and human speech perception are

longer than short-time frames commonly employed in auto-

matic speech recognition. Extended temporal context is also

beneficial for separation of concurrent sound sources such as

speech and noise. However, the length of patterns in speech

varies greatly, making it difficult to model with fixed-length

units. We propose methods for acquiring variable length

speech atom bases for accurate yet compact representation

of speech with a large temporal context. Bases are generated

from spectral features, from assigned state labels, and as a

combination of both. Results for factorisation-based speech

recognition in noisy conditions show equal or better sepa-

ration and recognition quality in comparison to fixed length

units, while model sizes are reduced by up to 40%.

Index Terms— Spectral factorization, speech recogni-

tion, noise robustness

1. INTRODUCTION

Speech contains phonetic units of varying lengths, ranging

from single phones to their combinations, syllables, words

and complete phrases. Statistical analysis of speech reveals

correlation in its temporal behaviour spanning hundreds of

milliseconds, decreasing gradually with no strict upper limit

[1]. Meanwhile, physiological studies and listening tests have

shown that temporal modulations at under 12 Hz (period of 83

ms or more) are crucial for speech intelligibility [2].

Conventional automatic speech recognition (ASR) sys-

tems typically use frames of approximately 25 ms as their fea-

tures, and Markovian state transition models which only con-

sider temporal context of one frame. The approach is com-

putationally efficient and sufficient for single phone classifi-

cation, but fails to model the long term temporal behaviour

motivated by natural speech structures and human hearing.

Especially in noisy conditions short-term spectra become un-

reliable as features for classification. Separating and recog-

nising sources from a single frame is often an ill-posed prob-

lem. While partial alleviation can be achieved by including

delta and acceleration features to frame spectra, the context

still remains limited, and extended temporal connectivity ac-

tually violates the Markovian model assumption [1]. Due to

T. Virtanen has been funded by the Academy of Finland, grant #258708.

these limitations and the need for more robust models, there

is increasing interest towards long context spectrogram mod-

elling in ASR [3].

Several approaches have been proposed for increasing the

context of speech models. TRAPs features observe long term

temporal behaviour of a few spectral bands [4]. HAC mod-

els quantise frame level audio events into classes and form

histogram vectors summarising the events in variable length

words [5]. Phonetic segmentation of speech has been dis-

cussed and demonstrated in literature [6], although evaluation

has usually consisted of comparison to manual segmentation

with no application to ASR. Longest segment matching has

been applied to dereverberation [7] and robust ASR [8]. In-

creased context has also been used in deep belief networks

with optimal results gained at contexts of 110–270 ms [9].

Using spectro-temporal atoms spanning 200–300 ms has

been shown to provide high separation quality and noise ro-

bustness with methods based on non-negative matrix factori-

sation (NMF) [10, 11, 12]. However, the exact choice of win-

dow length has proven difficult. Increasing the context will

improve robustness. On the other hand, it increases the com-

plexity of modelled spectro-temporal patterns, thus requiring

more atoms for the same data. Furthermore, fixed atom length

does not correspond to the large variation of acoustic units oc-

curring in real world speech and noise.

While virtually all studies on NMF thus far have concen-

trated on fixed atom length models, more recently variable

length modelling has also been proposed. Yılmaz et al. used

combination of factorisation passes with multiple fixed length

dictionaries [13]. Although a promising step towards variable

length modelling, using multiple large dictionaries may prove

impractical. Meanwhile, Wang and Tejedor have proposed a

model for employing different atom lengths simultaneously in

convolutive NMF (also known as NMD) [14], and presented

an introductory experiment on two-speaker separation.

In this work we extend variable length NMD modelling

to robust ASR, and propose methods for acquiring compact

speech bases with a preference for long context, yet able to

model units of any length. We employ two data sources for

finding units; unannotated spectral features, and state labels

acquired from a language model via forced alignment. The

two sources are also used in conjugation. Models are eval-

uated in a noisy ASR task using the 1st CHiME Challenge

corpus [15]. Factorisation-based representation is used for
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feature enhancement for an external back-end, and for ASR

directly from atom activations. First we introduce the fun-

damentals of spectral factorisation. The proposed acquisition

method is presented in Section 3. In Section 4 we describe

the evaluation set-up and experiments. Results are listed and

discussed in Section 5, whereafter we conclude in Section 6.

2. SPECTROGRAM FACTORISATION

In spectrogram factorisation, the goal is to model a mixed ob-

servation spectrogram Y as a sum of separated source spec-

trogram estimates, which in robust ASR comprise speechΨs

and noiseΨn. The dimensions of each utterance spectrogram

are B × Tutt, where B is the number of spectral bands and
Tutt is the number of frames. The estimates are constructed
by weighted summing of atom spectrograms Al (B × Tl).

Atoms are indexed by l from 1 to basis size L. Whereas in
earlier work the atom length Tl has been a constant [11, 12],

in this work we allow it to vary between atoms.

Each utterance spectrogram estimate Ψ is a convolutive

sum of atom spectrograms, weighted by a LG × W activa-

tion matrixX. LG is the number of atoms belonging to set G
of the source(s) being modelled. W is the number of permit-
ted window indices, equal or less than Tutt. The convolutive
reconstruction formula for a spectrogramΨG is

ΨG =
∑

l∈G

Tl
∑

t=1

Al,t

→(t−1)

Xl , (1)

whereAl,t denotes the t
th frame column of atom l,Xl is the

lth row vector of X, and operator → shifts it right by t − 1
columns in a length Tutt zero-padded array to make all partial
matrices to be summed B × Tutt. The method is otherwise
similar to commonly used convolutive modelling [16], except

that the atom length Tl can be given separately for each atom.

Assuming a pre-generated supervised basis A, the fac-

torisation task consists of finding the activation matrix X for

a chosen quality function. After solving X, it is used either

for estimating source spectrograms as above, or directly as

a classifier by observing the activated atoms and their sup-

plementary label information. Both methods have been used

for robust ASR. Their details can be found in earlier work

[10, 12], and are also given briefly in the following sections.

3. COMPACT VARIABLE LENGTH BASES

In previous work, fixed length atoms have been acquired by

sampling randomly a large amount of exemplars [10], or by

constructing templates for each word of a small vocabulary

[11, 12]. However, both methods may prove problematic

when real world speech must be modelled. In order to cover

spectro-temporal patterns of speech with a compact set of

atoms, we propose an algorithm which aims at discovering

recurring events of variable length with a preference for long

units. The algorithm is based on searching for clusters of

speech segments which match each other.

First, let us define a similarity measure c between two
frame feature vectors f

(i), f (j). The frames are consid-

ered matching if their c value exceeds a given threshold

θ. Similarly, two sequences of length N , [f
(i)
1 . . . f

(i)
N ] and

[f
(j)
1 . . . f

(j)
N ] are considered matching if all their mutual vec-

tor pairs f
(i)
n , f

(j)
n match. Because the atoms in NMD are

rigid with no time warping, it is crucial that sequences match

throughout their duration.

We consider two different data sources for finding matches.

First, we observe the spectral features of frames, denoted by

s. Spectral matching can be defined by any similarity mea-

sure, but in this work we use straightforward dot product

cs(i, j) = s
(i) · s(j) (2)

between L2-normalised spectrum vectors. The largest possi-

ble spectral similarity is thus 1.

The second method is using phonetic state labels acquired

from word transcriptions with forced alignment. Each frame

in training data is given a label denoting its membership in ex-

actly one language model state q of total Q states. We define
the similarity of states in frames i and j as

cl(i, j) =







γfull if q(i) = q(j)

γpart if |q(i) − q(j)| = 1
γnone otherwise

(3)

The midmost ‘partial match’ is true if the states follow each

other in a linear language model, thus allowing minor errors in

alignment. Finally, the similarity measures may be combined

by using a merging function. In this work the function is the

sum of coefficients,

cm(i, j) = cs(i, j) + cl(i, j) (4)

The relative significance of spectral and state similarity can

be defined via γs and the threshold θ.
Clustering is implemented with a greedy longest-first

search. Starting from the largest allowed atom length Tmax,

we find pairwise matching sequences from training data. If

a sequence is found with a sufficient number of matches to

other sequences, these instances form a cluster and further

an atom. The contained frame ranges are flagged as taken.

Then the algorithm continues clustering, reducing the atom

length T when clusters of chosen size can no longer be found.
Halting can be defined e.g. by the number of extracted atoms,

percentage of modelled training data, or a minimum atom

length Tmin. Although the greedy algorithm does not guar-

antee global maximisation of atom lengths, it is practically

viable and produces a basis of recurring spectral patterns in a

descending order of length and frequency of occurrence.

4. EXPERIMENTAL SET-UP

4.1. Data set and features

For the experiments, we used the GRID-based 1st CHiME

Challenge corpus [15]. Its speech consists of six-word com-
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mand utterances following a linear verb-colour-preposition-

letter-digit-adverb grammar. Word classes have cardinalities

4/4/4/25/10/4 respectively, totalling to 51 words. The task

is to recognise ‘letter’ and ‘digit’ keywords. There are 34

speakers, and a 500-utterance training set is provided for each.

Speaker identity is assumed known in recognition. Noisy de-

velopment and test sets both contain 600 utterances mixed

with highly non-stationary room noise at six SNRs ranging

from +9 to -6 dB. All audio data contains room reverberation.

All binaural source audio was converted into 40-band

mel-spectral features using 25 ms frames with 10 ms shift,

and averaged into mono. Spectral bands were equalised with

fixed band weights derived from training data [12]. Default

CHiME language model comprising 250 sub-word states and

its forced alignment were used to assign state labels to frames.

4.2. Frame correlation functions

Three correlation variants were used for clustering speech

frames in basis acquisition:

1. Spectral features only (‘spect’)

2. State labels only (‘label’)

3. Combination of the two (‘comb’)

The spectral space employed mel magnitudes with square

root compression and augmented delta features derived from

a five-frame window [12]. Spectral similarity cs was mea-
sured as the dot product of 2-normalised vectors. The features

were chosen for invariance to absolute loudness, while retain-

ing the temporal dynamics of speech. In purely spectral

acqusition θ was set to 0.89 and state correlation cl was 0.
In solely label-based acquisition, cs was in turn set to

0. Label correlation values were γfull = 2, γpart = 1 and
γnone = 0. Threshold θ was set to 1 with an additional con-
straint that the mean correlation between sequences was over

1.8. In other words, all state pairs must correlate at least par-

tially, and 80% of them must match perfectly. As the algo-

rithm has no access to spectra, we require relatively strict state

sequence similarity with a small allowance for fluctuations.

Combined acquisition used the same spectral correlation

with θ increased to 0.92. However, cl used γfull = 0.06,
γpart = 0.03 and γnone = 0. Parameters were tuned in 0.01
steps using development data.

4.3. Basis acquisition

After defining the frame correlation functions, speech bases

were acquired from training data for each speaker separately

as follows. Starting from Tmax, all pairwise matching se-

quences were searched from training data. Because in GRID

data each word is chosen randomly from its class and no word

transition is more likely than another, we restricted learning to

clusters modelling a single word each. A cluster was selected

if it contained at least 25% of the modelled word’s instances.

At each window length, all such clusters were extracted in a

descending order of relative size, whereafter T was reduced

Fig. 1. Histograms of atom lengths in selected speakers’ bases

for spectrum-based (left) and label-based (right) acquisition.

L is the total number of atoms.

10 20 30 40 50

id 1, spect (L=165)

10 20 30 40 50

id 1, label (L=157)

10 20 30 40 50

id 6, spect (L=181)

10 20 30 40 50

id 6, label (L=146)

10 20 30 40 50

id 21, spect (L=217)

10 20 30 40 50

id 21, label (L=147)

by one frame. The process was halted either by reaching the

minimum length Tmin, or if at least 75% of non-silent train-

ing frames were already covered. Sequences were allowed to

span over silent frames (defined by spectral energy) to model

e.g. stop consonants, but not to end in one, as such cases

could be modelled with a shorter atom instead.

Each cluster was converted into a speech atom by averag-

ing its mel magnitude spectrograms binwise. In addition, the

preceding and succeeding 2 frames were included in atoms,

because their magnitude content is implied by delta features.

Original Tmax and Tmin were set to 46 and 6, thus final atom

lengths ranged from 50 to 10 frames. A few examples of

atom length histograms within individual speakers’ bases are

shown in Figure 1. For now, we can notice that the whole

range is employed in different variants, and the distribution

depends heavily on the speaker and the method. Further anal-

ysis is given later in Section 5.

A summary of the generated bases is shown in Table 1.

For each generation method; spectrum-based (‘spect’), label-

based (‘label’) and combined (‘comb’), we list the statistics of

atom counts, total frame counts, and average atom lengths of

the 34 speaker-dependent bases. Previously used fixed-length

bases (‘fixed’) with exactly 250 length 25 atoms per speaker

are included for comparison [12].

4.4. Factorisation and recognition

The factorisation and recognition framework mostly fol-

lows small basis experiments described in [12]. A joint

speech+noise basis was formed from a variable number of

speaker-dependent speech atoms (see Table 1), and 250 noise

atoms sampled from the context of test utterances. Activation

matricesX were solved with variable-length NMD described

in Section 2 [14]. 300 iterations were used as before, and

an L1 sparsity penalty was applied for better separation and

classification. Where possible, parameters were set as in the

250+250 fixed length atom experiments in [12]. Especially

the fixed length noise atoms were replicated exactly to study

the contribution of new speech models alone.

For decoding and recognition, we used two methods. The

first is sparse classification (SC) via activation weights and

3
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Table 1. Statistics of the 34 speaker-dependent speech bases,

listed for all acquisition methods. Number of atoms in a ba-

sis, amount of contained frames, and average atom length are

reported as minimum, mean and maximum values over speak-

ers. The reference method always uses 250 length 25 atoms.

method
atom count frame count avg atom length

min mean max min mean max min mean max

spect 160 190 237 2941 3793 4659 17.0 20.0 23.6

label 135 150 181 3346 4167 5052 21.6 27.9 33.9

comb 157 182 232 3151 4027 4903 18.6 22.2 25.8

fixed 250 6250 25

atom labels [10, 12]. In this method, aQ×Tutt state likelihood
matrix is generated similarly to the spectrogram estimate of

Equation (1) using Q × Tl label matrices assigned to speech

atoms. Labels were learnt by partial training set factorisation

and ordinary least squares regression between activations and

utterance state content [12]. Final likelihood matrices were

decoded directly using the default CHiME HMMs.

The second method is feature enhancement (FE) by using

the ratio Ψ
s/(Ψs + Ψ

n) of speech-only and total spectral
reconstructions from Equation (1) as a time-varying filter for

the original utterance spectrogram [12]. The enhanced signal

was passed to a multi-condition trained robust GMM back-

end, previously used in [11, 12]. Details of both methods can

be found in earlier work [12].

5. RESULTS AND DISCUSSION

Speech recognition and enhancement results for each mod-

elling method are listed in Table 2 as keyword recognition

rates for sparse classification (SC) and feature enhancement

(FE), and signal-to-distortion ratio (SDR) of enhanced utter-

ances measured with the BSS Eval toolkit [17]. Shown values

are averages over noisy conditions and given for development

and test sets separately. The first line contains baseline results

for unenhanced signals. The next three lines correspond to

similarity measures defined in Section 4.2 for variable length

modelling. Results for previous 250+250 atom fixed-length

modelling (‘fixed’), and significantly larger 5000+5000 atom

NMF bases (‘large’) are also included for comparison [12].

First, we can observe from Table 1 that in each mea-

sure of basis sizes, approximately 10–25% deviations take

place between speakers from the mean to minimum and

maximum values, illustrating the model’s adaptivity. Mean

atom count is reduced by 24.0–40.0% and mean frame count

by 33.3–39.3% in comparison to fixed-length bases. Mean

atom lengths vary significantly between speakers and meth-

ods. Spectral models produces more and shorter atoms than

labels. Source combination generally falls inbetween.

Although the statistics ultimately depend on the similarity

functions and clustering parameters, the observed trend can

be justified by properties of the functions. Feature-only mod-

Table 2. Keyword recognition rates (%) and SDRs (dB) for

unenhanced signals, proposed, and reference basis acquisition

methods. Results are averages over noisy conditions from +9

to -6 dB. The best result among small basis methods (spect,

label, comb, fixed) for each set is highlighted.

method
development set test set

SC FE SDR SC FE SDR

unenh - 74.6% -0.72 dB - 74.7% -0.78 dB

spect 79.4% 85.1% 7.87 dB 79.9% 85.4% 8.50 dB

label 78.3% 85.6% 8.80 dB 78.9% 85.6% 8.86 dB

comb 79.7% 85.3% 8.54 dB 80.3% 85.5% 8.58 dB

fixed 78.0% 84.8% 8.57 dB 80.8% 85.2% 8.62 dB

large 85.9% 86.7% 9.49 dB 85.8% 86.8% 9.55 dB

elling will discover recurring spectral units, which are often

shorter than whole words due to coarticulation and natural

variation in pronunciation. State-only models are based on

forced alignment, which always produces a similar sequence

regardless of phonetic variation. It only observes variations

in pacing, which are more consistent for any given speaker.

This can be seen in the atom length histograms of Figure 1.

Speaker 1 is fast and produces short atoms for both methods.

Speaker 6 is slow and clear, hence both bases have longer

atoms. Speaker 21 is relatively slow but very melodic. In this

case, the feature-based atoms are shortest in the whole set,

whereas state-based atoms are among the longest.

Regarding the separation and recognition results of Ta-

ble 2, there is some variation between methods for different

result metrics. While separation measured by SDR is either

above or below the previous ‘fixed’ method, FE-based ASR

results improve uniformly. Gains are small, but it should be

noted that the gap to 20 times larger exemplar models (‘large’)

is only < 2%. The performance of SC is harder to anal-
yse, because the results for development and test set differ

greatly for the fixed-length model, while the proposed meth-

ods are more consistent. One contributing factor is that SC for

CHiME data depends heavily on keyword modelling. In the

previous model, at least four atoms per word were guaranteed,

whereas the proposed method has no such constraints. In in-

dividual SNR level scores (not shown), the proposed methods

had slightly lower clean end classification quality but higher

robustness towards low SNRs. Separation and classification

also have partially conflicting goals with the former preferring

long atoms, but the latter requiring also short atoms which

bear a higher risk of confusion with noise.

The main benefit of the presented method is that it can

adapt to any vocabulary and speaking style, unlike the previ-

ous model which assumed long context implied by sub-word

labels of small vocabulary and required defining the window

length explicitly. Although a small vocabulary task was used

here for simplicity of presentation and easier comparison to

earlier work, we have already employed the methods — both

feature- and state-based— successfully to compact modelling
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of medium vocabulary speech [18]. Regarding complexity,

the basis acquisition time for this task was < 30 minutes per
speaker using MATLAB code and an E8400 dual-core desk-

top PC. For larger corpora, computation of full similarity may

become slow, thus pre-classification and approximate meth-

ods may become recommendable.

While in this work a fixed-length noise model was used to

limit the number of parameter changes, variable-length meth-

ods are equally applicable to noise, where the variation be-

tween unit lengths may be even greater than for speech.

6. CONCLUSIONS

We proposed methods for acquiring variable-length long-

context speech bases for noise robust speech separation and

recognition. Spectral features, state labels, and a combination

of both were used for clustering speech patterns to atoms via

longest-first segment search. Applied to 1st CHiME Chal-

lenge data, the methods produced speaker-adaptive bases with

atom lengths ranging from 10 to 50 frames. We managed to

reduce model sizes by up to 40% from already compact fixed-

length bases, while achieving similar or better separation and

speech recognition results. The presented methods can be

used to model large vocabulary speech and non-stationary

noise for better applicability to real world ASR scenarios.
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