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ABSTRACT

Wideband power spectrum sensing is fundamental for nu-

merous applications. When side information on the poten-

tially active emitters is available, such as carriers and spec-

tral masks, it should be exploited to improve sensing perfor-

mance. Here the power spectrum is modeled as a weighted

sum of candidate spectral density primitives. The objective

is to estimate the unknown weights from a few randomly fil-

tered broadband power measurement bits, taken using a net-

work of low-end sensors. A linear programming formulation

that exploits the sparsity in the unknown weights is proposed.

A better approach follows, which exploits the approximately

Gaussian distribution of the errors in the power measurements

prior to quantization, in a maximum likelihood formulation

that includes a sparsity-inducing penalty term. Simulations

show that the model weights can be accurately estimated from

few bits, even when the errors are significant.

1. INTRODUCTION

Wideband spectrum sensing is fundamental for many appli-

cations. Most work on spectrum sensing has focused on

reconstructing the signal itself [1]. In cognitive radio and

other applications, however, only the power spectrum (PS) is

needed, i.e., the Fourier transform of the signal’s autocorrela-

tion. Based on this concept, the sampling rate requirements

can be considerably decreased, without requiring spectrum

sparsity [2]. Further reduction in the sampling rate is pos-

sible by exploiting available prior information on the spec-

trum, such as spectral masks, carrier frequencies, and band-

widths. In [3], a mixture of statistically independent signals

is considered, where the PS of each signal is known up to a

scaling factor representing the transmission power, which is

estimated using sub-Nyquist measurements.

It is now widely accepted that effective spectrum sens-

ing must be a collaborative endeavor, involving many sensors

taking relatively sparse measurements across space, time, and

frequency. Cooperative sensing and detection schemes are
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shown to increase reliability, reduce average detection time,

help cope with fading, and improve throughput [4]. A parsi-

monious basis expansion model for the PS has been consid-

ered in [4], where multiple sensors cooperate in estimating the

basis coefficients (i.e, powers), by exploiting sparsity as prior

information to improve the estimation performance. In dis-

tributed spectrum sensing scenarios, however, sending analog

or finely quantized signal sample streams to a fusion center

(FC) is a heavy burden in terms of communication overhead

and battery lifetime.

This assumption was subsequently relaxed in [5], where a

network sensing scenario, comprising scattered low-end sen-

sors and a FC, was considered. Each sensor reports a single

randomly filtered power measurement bit to the FC, which

then estimates the ambient PS from the collected bits. A

linear programming (LP) formulation was introduced in [5],

generalizing classical nonparametric PS estimation to the case

where the data is in the form of inequalities, rather than equal-

ities, and exploiting the autocorrelation parametrization and

pertinent nonnegativity properties. This setting has been ex-

tended in [6] to handle line spectra, using a maximum likeli-

hood formulation.

In this paper, we consider the same network sensing sce-

nario as [5, 6], and a PS model similar to [3, 4]. The overall

PS is modeled as a weighted sum of candidate spectral density

primitives, where the weights are unknown. Assuming accu-

rate power measurements at the sensors, an LP formulation is

proposed to estimate the unknown model weights by exploit-

ing their sparsity, thus obtaining a full PS estimate. The prob-

lem formulation in this case may be reminiscent of one-bit

compressed sensing [7]. Unlike [7], we operate on the PS, not

the signal per se, which enables us to exploit positivity con-

straints that are not present in the one-bit compressed sens-

ing framework. In addition, the choice of (positive) thresh-

olds mitigates the scaling problem, so we do not use the unit

sphere constraint imposed in [7]. The performance (i.e., esti-

mation error vs. measurement bits) is significantly improved

by exploiting the additional constraints in our formulation.

Next, the errors in the power measurements prior to quan-

tization are considered. The distribution of these errors can be

shown to be approximately Gaussian, due to sample averag-

ing and the effects of frequency-selective fading. This is then

exploited in a maximum likelihood (ML) formulation that in-
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cludes a sparsity-inducing penalty term. Interestingly, the ML

formulation is similar to the formulation considered in [8] for

a seemingly very different problem: so-called conjoint analy-

sis. In order to reduce the number of bits transmitted from the

sensors so as to prolong battery lifetimes and to minimize the

communication overhead [9], a censoring scheme is also pro-

posed, where only sensors that provide the most useful infor-

mation bits are permitted to send, while other less-informative

sensors remain silent. Simulations show that the underlying

model weights can be accurately estimated using relatively

few bits, even when the errors are significant.

2. PROBLEM FORMULATION

2.1. Setup

Consider M scattered sensors measuring the ambient signal

power and reporting to a FC. The received signal at sensor

m ∈ {1, . . . ,M} is sampled using an analog-to-digital con-

verter operating at Nyquist rate, yielding the discrete-time

signal ym(n). Constant scaling differences in {ym(n)}Mm=1

across sensors due to path loss, shadowing, and frequency-flat

fading can be factored out via automatic gain control (AGC),

and the Nyquist sampling requirement can be lifted by us-

ing an equivalent analog processing and integration chain, as

shown in [5]. In presence of frequency-selective fading, the

received signal ym(n) is the convolution of the primary wide-

sense stationary (WSS) signal x(n) with the linear finite im-

pulse response (FIR) fading channel {hm(`)}T−1

`=0
, expressed

as ym(n) =
∑T−1

`=0
hm(`)x(n− `), where T is the number of

channel taps. The channel is assumed time-invariant during a

sensing epoch.

Sensor m ∈ {1, . . . ,M} then passes ym(n) through a

wideband FIR filter with random complex pseudo-noise (PN)

impulse response gm(n) of length K > T , where:

gm(n) =

{

(1/
√
2K)(±1± j) if 0 ≤ n ≤ K − 1

0 otherwise
(1)

The filter sequence gm(n) can be generated using a PN lin-

ear shift register, whose initial seed is unique for each sensor

(e.g., its serial number), and is assumed to be known to the

FC. Using random PN filters can also be motivated from a

random projections viewpoint, as for the compression matrix

applied to sparse signals [7]. The filter’s output sequence is

expressed as zm(n) =
∑K−1

k=0
gm(k)ym(n− k).

Let αm denote the average power of the WSS signal

zm(n), i.e., αm := E[|zm(n)|2]. Each sensor estimates αm

using a sample average:

α̂m =
1

N

N−1
∑

n=0

|zm(n)|2. (2)

Finally, each sensor compares the estimated α̂m to a sensor-

specific threshold tm. If α̂m ≥ tm, then sensor m sends a bit

bm = 1 to the FC, otherwise it sends bm = −1.

2.2. Signal Model

We assume that the PS of the signal x(n) can be expressed

(approximated) by the model:

Sx(ω) =
L
∑

`=1

ρ`Ψ`(ω − ω`) (3)

where Ψ`(ω) can be any function. For example, Ψ(ω) =
δ(ω) corresponds to a spectral line [6]. Another example

is the (overlapping) raised cosine bases which can model

transmit-spectra of multicarrier systems [4]. In general, the

PS model (3) can describe the spectrum of L primary trans-

mitters, where each transmitter ` ∈ {1, . . . , L} is transmit-

ting at center (angular) frequency ω`, with transmit-power

ρ`, and a spectral mask that is characterized by the function

Ψ`(ω). In this setting we assume that the large-scale fading

channel between transmitter ` and sensor m is known a-priori

(e.g., using training sequences), and is removed from the re-

ceived signal. Note that the bandwidth can be different across

{Ψ`(ω)}L`=1
.

If L and {Ψ`(ω)}L`=1
are known and L is relatively small

(e.g. L < 5), the parametric ML estimation technique that

has been considered in [6] for estimating line spectra can be

used to estimate {ω`}L`=1
and {ρ`}L`=1

for the PS model (3).

On the other hand, the estimation problem can be linearized

by considering all possible center frequencies {ω`}L`=1
if L is

large or unknown (i.e., an overcomplete dictionary), such that

the (sparse) weights {ρ`}L`=1
are the only unknowns in the PS

model (3). This is the scenario considered herein.

Let rx(k) := E[x(n)x∗(n−k)] denote the autocorrelation

sequence of x(n). From (3), the autocorrelation function can

be expressed as:

rx(k) =
1

2π

∫ 2π

0

Sx(ω)e
jωkdω

=

L
∑

`=1

ψ`(k)ρ`e
jω`k (4)

where ψ`(k) :=
1

2π

∫ 2π

0
Ψ`(ω)e

jωkdω is the inverse discrete-

time Fourier transform (DTFT) of Ψ`(ω).

Define z̃m(n) :=
∑K−1

k=0
gm(k)x(n − k) as the convolu-

tion of the primary signal x(n) and the random filter gm(n)
(i.e., ignoring fading), and let α̃m := E[|z̃m(n)|2]. Also, de-

fine the deterministic autocorrelation of gm(n) as:

qm(k) :=
K−1
∑

`=0

gm(`)g∗m(`+ k) (5)

Hence, it can be shown that:

α̃m =
K−1
∑

k=1−K

rx(k)q
∗
m(k)

=
L
∑

`=1

ρ`

K−1
∑

k=1−K

ψ`(k)e
jkω`q∗m(k)

= vT
mρ (6)
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where ρ := [ρ1, . . . , ρL]
T and vm(`) :=

∑K−1

k=1−K ψ`(k)e
jkω`q∗m(k) is the `-th entry of the vector vm,

` = 1, . . . , L. The filter length K should be sufficiently large

to ensure that the random filtering (1) yields non-redundant

vectors {vm}Mm=1 with high probability. Note that ρ can

be upper bounded by pmax (due to the use of AGC at the

front-end of the sensor processing chain). This yields the box

constraint ρ ∈ B, where B := {ρ ∈ R
L | 0 ≤ ρ ≤ pmax}.

2.3. Error Model

Assuming that {hm(`)}T−1

`=0
are i.i.d. complex Gaussian

random variables with zero-mean and 1/T -variance, it can

be shown that the errors due to fading, defined as ẽm :=
αm − α̃m, can be approximated as i.i.d. Gaussian random

variables with zero-mean and variances {σ̃2
m}Mm=1 using the

Lyapunov central limit theorem when T is large. Further-

more, the estimation errors due to insufficient sample averag-

ing, ēm := α̂m − αm, can also be modeled as i.i.d. Gaussian

random variables with zero-mean and variances {σ̄2
m}Mm=1,

by the central limit theorem. This means that α̂m can be mod-

eled as: α̂m = α̃m+em, where em := ẽm+ ēm is a Gaussian

random variable with zero mean and variance σ2
m = σ̃2

m+σ̄2
m.

Thus, the power measurement bit of each sensor can be ex-

pressed as: bm = sign(vT
mρ + em − tm). Note that the per-

formance with errors is identical to the error-free case as long

as no measurement bits are flipped.

Objective. Given the measurement bits {bm}Mm=1, the goal is

to estimate the sparse vector ρ. In the following two sections,

different formulations are proposed for estimating ρ.

3. LINEAR PROGRAM FORMULATION

In this first approach, we assume sufficiently small errors such

that sign(α̂m − tm) = sign(α̃m − tm), ∀m. This means that

the FC learns that: bm(α̃m − tm) ≥ 0, from each received

bit bm. The linear inequality constraints: bm(vT
mρ − tm) ≥

0, for m = 1, . . . ,M , in addition to the box constraint B,

define the feasible region (polyhedron) for ρ. In order to find

a good estimate for ρ inside the feasible region, the sparsity

of ρ can be exploited by minimizing the sparsity-inducing `1-

norm: ||ρ||1 =
∑L

`=1
ρ`, for ρ ≥ 0. This yields the following

LP:

min
ρ∈B

L
∑

`=1

ρ`

s.t. : bm(vT
mρ− tm) ≥ 0, m = 1, . . . ,M.

(7)

The LP (7) is efficiently solved using specialized algorithms.

The solution of (7) is the sparsest solution attainable via the

`1-norm that satisfies the constraints, whereas sparser solu-

tions can be achieved using the iterative weighted `1-norm

algorithm of [10].

It is worth mentioning that problem (7) is similar to the

nonparamteric estimation problem considered in [5], where

the autocorrelation function is first estimated for a finite num-

ber of lags, then Fourier transformed to obtain a PS esti-

mate. It is also worth mentioning that, unlike the 1-bit com-

pressed sensing framework of [7], the sphere constraint, i.e.,

||ρ||2 = 1, is not required in (7) due to the positivity of ρ and

{tm}Mm=1.

The assumption that em ≈ 0, ∀m, enables using α̂m =
vT
mρ in the constraints of (7). As the error variances,

{σ2
m}Mm=1, increase, the estimation problem (7) becomes in-

accurate, and the constraints may become inconsistent as the

number of flipped bits due to errors increase. This moti-

vates exploiting the Gaussian distribution of {em}Mm=1 in a

maximum-likelihood formulation, which is presented in the

next section.

4. MAXIMUM LIKELIHOOD FORMULATION

In this approach, the Gaussian distribution of {em}Mm=1 is

used in defining a convex optimization problem that yields

a (sparse) ML estimate of the power vector ρ.

Define M+ := {m|bm = 1} and M− := {m|bm =
−1}. Since the error samples {em}Mm=1 are i.i.d Gaussian

random variables with zero-mean and variance {σ2
m}Mm=1, the

probability of receiving the bits b1, . . . , bM , given ρ, is:

f(b1, . . . , bM |ρ)
=

∏

m∈M+

Pr(α̃m + em ≥ tm)
∏

m∈M
−

Pr(α̃m + em < tm)

=
∏

m∈M+

Φ

(

vT
mρ− tm
σm

)

∏

m∈M
−

Φ

(

tm − vT
mρ

σm

)

(8)

where Φ(u) := 1√
2π

∫ u

−∞ e−t2/2dt is the cumulative distri-

bution function (CDF) of the Gaussian distribution. The log-

likelihood function can thus be written as:

log f(b1, . . . , bM |ρ) =
M
∑

m=1

log Φ

(

bm(vT
mρ− tm)

σm

)

(9)

Similar to (7), the sparsity of ρ can be exploited by

adding the sparsity-inducing penalty ||ρ||1 to the cost func-

tion. Therefore, a sparse ML estimate of ρ is obtained by

solving the optimization problem:

max
ρ∈B

M
∑

m=1

log Φ

(

bm(vT
mρ− tm)

σm

)

− λ
L
∑

`=1

ρ` (10)

where λ ≥ 0 is a tuning parameter that controls the sparsity

of the solution. Since the Gaussian CDF Φ(·) is log-concave

[11, pp. 104], problem (10) is convex and can be solved ef-

ficiently using interior-point algorithms. Note that the maxi-

mizer of problem (10) always exists since ρ is bounded in B.

It is worth mentioning that (10) is similar to the formulation

considered in [8].

3
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Constrained Cramer-Rao Bound. In order to find a lower
bound on the estimation error variance of (10), we compute
the Cramer-Rao bound (CRB) assuming perfect knowledge
of the support set of ρ (i.e, oracle performance). Define κ as
the number of nonzero entries (cardinality) of ρ, i.e., ||ρ||0 =
κ. The CRB with cardinality constraint was studied in [12].
First, the Fisher information matrix (FIM) is computed as [8]:

J =

M
∑

m=1

e

−(vT
m

ρ−tm)2

σ2
m

2πσ2
m





1

Φ

(

v
T
m

ρ−tm

σm

) +
1

Φ

(

tm−v
T
m

ρ

σm

)



vmv
T

m

(11)

Let supp(ρ) denote the support set of ρ, and define the L×κ
matrix U as the matrix of feasible directions consisting of

the subset of columns of the identity matrix corresponding to

the set supp(ρ). The (constrained) CRB is thus computed as

[12]:

Trace(U(UTJU)−1UT ) (12)

This gives the best achievable mean square error obtained by

estimators that have perfect knowledge of the support set of

the vector to be estimated.

Censoring. It is important to reduce the number of bits trans-

mitted from the sensors so as to prolong battery lifetimes and

to minimize the communication overhead [9]. With censor-

ing, only sensors that provide the most useful information bits

are permitted to send, while other less-informative sensors re-

main silent. It is easy to see that the log-likelihood function

in (9) and the FIM in (11) are almost unaffected if the value

of |α̃m− tm|/σm is too large, because of the properties of the

Gaussian CDF, i.e., Φ(u) ≈ 1 (≈ 0) if u > 4 (resp. u < −4).

This means that the measurement bit bm is almost useless in

the estimation problem if |α̃m − tm|/σm is too large. Thus,

censoring can be employed such that sensor m sends bm only

if |α̂m − tm| ≤ ζm, where ζm > 0 is a censoring threshold

that is known at the sensor. More insight on the choice of ζm
is discussed in the following section.

5. NUMERICAL RESULTS

To test the performance of the proposed estimation tech-

niques, we assume that the primary signal PS model is the

combination of L = 20 identical raised cosine functions, each

with roll-off factor = 0.5 and bandwidth = 3π/L. The cor-

responding center frequencies are {ω` = 2π(` − 1)/L}L`=1
,

implying equispaced and overlapping functions. We use the

mean-square error (MSE), defined as MSEρ := E[||ρ− ρ̂||2],
to measure the performance of the proposed estimation tech-

niques, where the expectation is taken with respect to the ran-

dom impulse responses of the FIR filters, the random error

samples, and the random power vector ρ, obtained via 1000

Monte-Carlo simulation runs. Typically, the MSE should be

computed with respect to the estimated PS; however, the sym-

metry in the considered PS model allows using MSEρ instead.

A sparse vector ρ with 5 uniformly distributed nonzero

entries out of 20 is randomly generated and normalized by

� � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � �� � � �� � � 	� � � 

� �  � � � � � � � � � � � � � � ���� � � �

�  ! " # $ % & ' �! " # $ % & ' � ( � & ) % * $ + ) ,
Fig. 1. The MSE of the LP estimate, the MSE of the ML

estimate, and the (oracle) CRB, versus M , at large SER.

∑L
`=1

ρ` in each simulation run. For brevity, we name the

estimate of ρ obtained using (7) as the LP estimate, whereas

the estimate obtained using (10) is named the ML estimate. A

single threshold tm = t = 0.052 and a filter length K = 25
were used at all sensors. This t is numerically computed as the

minimizer of the expected CRB across different ρ and filter

realizations. The sparsity tuning parameter in (10) was fixed

to λ = 100 in the simulations. For the same error variance,

σm = σ, ∀m, we define the signal-to-error ratio (SER) as:

γ :=
∑L

`=1
ρ`ψ`(0)/σ

2. The MSE of the LP estimate, the

MSE of the ML estimate, and the (oracle) CRB computed

using (12), are plotted versus the number of sensors M in

Figs. 1 and 2, for γ = 5× 104 and γ = 500, respectively.

In Fig. 1, where a relatively large SER is considered,

the random errors in this case cause the flipping of 2% of

the sensor measurement bits, on average. In other words,

sign(α̃m−tm) 6= sign(α̂m−tm) for 0.02M sensors, on aver-

age. The figure shows the decrease of the CRB and the MSE

of the ML estimate as M increases, as expected. The figure

also shows that the MSE of the LP estimate is decreasing and

is close to MSE of the ML estimate for M ≤ 300, then it

increases when M increases to 500. The reason is that as M
increases, the constraints in (7) become more stringent, and

the flipped bits due to errors drive the solution far away from

the true estimate. In this setting, a feasible solution is guar-

anteed at ρ̂` = t/ν, ∀`, where ν :=
∑L

`=1
vm(`) = Lψ(0),

which is constant for all m. In other more general settings,

the constraints in (7) can become inconsistent with large M
when many bits are flipped.

The performance of the censoring scheme proposed at the

end of Section 4 is also considered in Fig. 1. The dashed

line in the figure shows the MSE of the ML estimate when

the censoring threshold ζ was selected such that only the best

80 out of M sensors are active in each simulation run (i.e.,

|α̂m − t| ≤ ζ for 80 sensors), on average. As shown in the

figure, the performance with censoring is very close to the

case when all sensors are reporting. Censoring in this case

is very efficient for large M (e.g., performance with 80/500

4
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� � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � �� � � 	� � � 
� � -
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Fig. 2. The MSE of the LP estimate, the MSE of the ML

estimate, and the (oracle) CRB, versus M , at small SER.

reporting sensors almost same as all 500 reporting sensors).

In Fig. 2, where a relatively small SER is considered,

the random errors in this case cause the flipping of 16% of

the sensor measurement bits, on average. The figure shows

the decrease of the CRB and the MSE of the ML estimate

as M increases, albeit at larger values than their counterparts

in Fig. 1, due to the increased flipped bits due to errors. It

is interesting to see that good ML estimates can be obtained,

despite the flipping of so many measurement bits. We also

note that the gap between the MSE of the ML estimate and

the CRB decreased as the SER decreased from Fig. 1 to Fig.

2. The performance of the LP estimate in this figure is very

limited by the increased flipped bits, which is not accounted

for in (7).

The MSE of the ML estimate when employing the same

fixed censoring setting as in Fig. 1, represented by the dashed

line in Fig. 2, is increasing with M . This is because the

number of flipped bits among the 80 measurement bits that

are reported each simulation run, on average, increases as M
increases, which deteriorates the performance. Instead, we

considered an adaptive censoring scheme, where the censor-

ing threshold ζ was selected such that 67% of the sensors (i.e.,

0.67M ) are reporting in each simulation run, on average. The

MSE of the ML estimate when this censoring scheme was em-

ployed is represented by the dotted line in Fig. 2. Although

the adaptive censoring performance is improving with M , we

can see that the performance is significantly worse than the

case when all sensors are reporting. Therefore, we conclude

that when the SER is small, it is better that all sensors report

to combat the increasing number of flipped measurement bits

due to errors, whereas censoring is more efficient when the

SER is large.

6. CONCLUSIONS

Assuming available prior information on the spectrum, such

as spectral masks, center frequencies, and bandwidths, an

over-complete dictionary model can be considered for the PS.

We proposed an LP formulation that exploits sparsity to es-

timate the unknown PS model weights when accurate mea-

surements are assumed at the sensors, and an ML formulation

with a sparsity-inducing penalty that exploits the Gaussian

distribution of the errors in the sensor measurements prior

to quantization. Simulations have shown that the underlying

model weights can be accurately estimated using relatively

few bits, even when the errors are significant.

7. REFERENCES

[1] E. Axell, G. Leus, E. G. Larsson, and H. V. Poor, “Spec-
trum sensing for cognitive radio: State-of-the-art and re-
cent advances,” IEEE Signal Processing Mag., vol. 29,
no. 3, pp. 101–116, May 2012.

[2] D.D. Ariananda, and G. Leus, “Compressive wideband
power spectrum estimation,” IEEE Trans. Signal Pro-
cessing, vol. 60, no. 9, pp. 4775–4789 , Sep. 2012.

[3] D. Romero, G. Leus, and R. Lopez-Valcarce, “Compres-
sive wideband spectrum sensing with spectral prior in-
formation” in proc. of the 38th International Conference
on Acoustics, Speech, and Signal Processing, Vancou-
ver, Canada, May 26-31, 2013.

[4] J. A. Bazerque, G. Mateos, and G. B. Giannakis,
“Group-Lasso on splines for spectrum cartography,”
IEEE Transactions on Signal Processing, vol. 59, no.
10, pp. 4648-4663, October 2011.

[5] O. Mehanna and N. D. Sidiropoulos, “Frugal sensing:
wideband power spectrum sensing from few bits,” IEEE
Transactions on Signal Processing, June 2013 (To ap-
pear).

[6] O. Mehanna, N. D. Sidiropoulos, and E. Tsakonas,
“Line spectrum estimation from broadband power de-
tection bits,” submitted to the 14th Workshop on Sig-
nal Processing Advances in Wireless Communications,
Darmstadt, Germany, June 16-19, 2013.

[7] P. Boufounos and R. Baraniuk, “1-bit compressive sens-
ing,” in Proc. Conf. Inform. Science and Systems (CISS),
Princeton, NJ, Mar. 2008.

[8] E. Tsakonas, J. Jalden, N. D. Sidiropoulos, and B. Otter-
sten, “Sparse conjoint analysis through maximum like-
lihood estimation,” submitted to IEEE Transactions on
Signal Processing, Oct. 2012.

[9] E. J. Msechu and G. B. Giannakis, “Sensor-centric data
reduction for estimation with WSNs via censoring and
quantization,” IEEE Transactions on Signal Processing,
vol. 60, no. 1, pp. 400-414, January 2012.

[10] E. Candes, M. Wakin, and S. Boyd, “Enhancing sparsity
by reweighted `1 minimization,” J. Fourier Analysis and
Applications, vol. 14, no. 5, pp. 877–905, Dec. 2008.

[11] S. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

[12] Z. Ben-Haim and Y. C. Eldar, “The Cramer-Rao bound
for estimating a sparse parameter vector,” IEEE Trans-
actions on Signal Processing, vol. 58, no. 6, June 2010.

5


