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ABSTRACT

Mean firing rate estimation is an important step in elec-

tromyographic (EMG) signals analysis. Its application is of

great interest for the conception and implementation of algo-

rithms in various research domains, ranging from neuromus-

cular diseases diagnosis to biomechanics. The proposed work

is focused on the study of the intrinsic cyclostationary prop-

erties of single motor unit action potential train. It must be

of direct interest to provide information about the neuromus-

cular command. It is shown that individual motor unit firing

rates can be better estimated using second order cyclostation-

ary analysis than traditional statistical tools, such as Fourier

transform. After a brief state-of-the-art on cyclostationary

analysis of EMG signals, the basic concepts and measures of

cyclostationarity are presented. Follows a presentation of the

EMG model. Results after application of the cyclostationary

analysis tools for simulated and real data are provided next.

A discussion on the obtained results concludes this work.

Index Terms— Electromyography, Cyclostationarity,

Degree of Cyclostationarity, Motor Unit, Firing Rate

1. INTRODUCTION

Neuromuscular functional unit is defined by the motor unit

(MU) as a single functional entity [1]. This unit consists of

an α-motoneuron in the spinal cord and the muscle fibers it

innervates. Muscular contraction is regulated by two mech-

anisms: the number and the firing frequency modulation of

MUs [2]. Hence, the assessment of the mean firing rate is nec-

essary to provide information about the neuromuscular com-

mand. Some studies had referred to the cyclostationarity to

investigate the neuromuscular activity without studying this

property. Most of them refer to the cyclostationarity in the

case of cyclic contractions [3], [4], [5], [6] but, at the best of

our knowledge, the cyclostationarity property has never been

investigated for the electromyographic signals (EMG) in the

literature.

The aim of this study is to analyse and identify the in-

trinsic cyclostationarity of a single motor unit action potential

train (MUAPt) in the case of constant-force isometric contrac-

tion and the link with the motor units firing rate (FR). Indeed,

Clamann [7] shows that under constant force and isometric

condition, the inter-spike intervals (ISI) are not constant but

random (jitter). It makes the signal non-periodic and thus, the

spectrum density does not contain any relevant information

about the firing rates. We show in this work that a cyclosta-

tionnary analysis can reveal this mean firing rates.

Knowing the mean firing rates is of importance for design-

ing MU-decomposition and/or MU-source separation meth-

ods. Final applications of this work can be found in neuro-

muscular diseases diagnosis or in biomechanics studies.

2. CYCLOSTATIONARY ANALYSIS

A cyclostationary (CS) signal is referred to a time-variant

process with periodic statistical properties [8]. More specif-

ically, a wide-sense first order CS signal shows a periodic

instantaneous mean: mx(t) = mx(t + T ), while a second
order CS (periodically correlated process) shows a periodic

auto-correlation function: Γxx (t, τ) = Γxx (t+ T, τ), where
Γxx (t, τ) stands for the auto-correlation function of x at time-
location t and time-lag τ . The two-dimensional Fourier trans-

form along t and τ of the auto-correlation function provides

the cyclic spectral density (CSD) Sxx (f, α):

Sxx (f, α) =

¨

t,τ∈R

Γxx (t, τ) e
−2iπ(fτ+αt)dtdτ (1)

with α = n
T
∀n ∈ N. The CSD can be efficiently esti-

mated using the averaged cyclic periodogram technique [9].

The CSD of eq.1 can be rewritten as a spectral correlation

between X
(

f + α
2

)

and X
(

f − α
2

)

[10]:

Sxx (f, α) = E

[

X
(

f −
α

2

)

X
(

f +
α

2

)

]

(2)
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In this work, we are interested in highlighting the pres-

ence of cyclostationary components in EMG data. Basically,

this can be done by analysing the CSD distribution that is the-

oretically non zero whenever α 6= 0. We are also interested

in estimating cyclic frequencies values that may be present in

the data. So we focus on marginal distributions of CSD as a

function of the cyclic frequency α.

A first measure of cyclostationarity is the integrated CSD

over spectral frequency f . Randall et al. [11] showed that this

measure can be easily computed using the expectation value

of the Fourier transform of the squared magnitude of xh(t),
with xh(t) being the Hilbert transform of x(t):

Mxx (α) =

ˆ

Sxx (f, α) df ≡ E
[

FT [|xh(t)|
2]
]

(3)

The Hilbert transform magnitude is often used to extract

the envelope of any signal so that this computation procedure

of Mxx (α) will be referred to envelope analysis in the fol-

lowing of the paper.

Another measure of cyclostationarity is the power-normalised

version of the integrated CSD, also named cyclostationary de-

gree (DCS) [12]:

DCSxx (α) =
Mxx (α)

Mxx (0)
(4)

3. MODELISATION

Each MUAPt yi (t) is simulated using a spike train convolved
with the MUAP template, namely xi (t), where i stands for

the MUAP index (i ∈ [1;N ], with N the number of active

MUs). In [7], ISI is defined as a Gaussian process with mean

firing period Ti = FRi
−1 and standard deviation si com-

puted using the following relation for the biceps brachii:

si = 0.91 · FRi
−2 + 4 · 10−3 (5)

expressed in seconds. Hence, the MUAPt yi(t) is modeled as
follows:

yi (t) = xi (t) ∗
+∞
∑

n=−∞

δ (t− nTi + τi) (6)

with τi ∼ N (0, si
2). Finally, the full EMG signal writes

as a sum of all active MU contributions:

EMG (t) =

N
∑

i=1

yi (t) + n(t) (7)

where n (t) is an i.i.d. Gaussian noise with σ2
n its vari-

ance.

In [11], the authors give the expression of the cyclic spec-

trum density in a more complicated model than our model

(eq.6) and its adaptation results, i.e. without amplitude mod-

ulation, in the following expression:

Syiyi
(f, α) = 1

T
Sxixi

(f, α) [Φi(α)− SΦiΦi
(f, α)]

×
∑

k∈Z
δ(α− k

Ti
) (8)

where SΦiΦi
(f, α) = Φi(f+

α
2 )Φi(f − α

2 ), Sxixi
(f, α) =

Xi(f + α
2 )Xi(f − α

2 ) with Xi(f) = FT [xi(t)], Φi(f) be-
ing the Fourier transform of the probability density of τi and

Snn(f) being the spectrum density of noise. The case α = 0
gives us the spectrum density of yi:

Syiyi
(f, 0) =

1

Ti

Sxixi
(f, 0)

[

1− |Φi(f)|
2
]

(9)

According to the authors, Φi(f) is a low-pass filter where
cut-off frequency at −3dB is approximately equal to f0 =
0.187
si

and using eq.5 we get f0 = 1
4.86×FRi

−2+21.3×10−3 .

For a firing rate varying between 5Hz and 25Hz we obtain a

−3dB cut-off frequency between 4.64Hz and 34.35Hz.

It can be deduced that Syiyi
(f, 0) ≈ 1

T
Sxixi

(f, 0) be-
cause the spectrum density of MUAP waveform Sxixi

(f, 0)
is negligible for all f < 25Hz. This assumption can be ex-

tended to the CSD case, so we have SΦiΦi
(f, α)Sxixi

(f, α) ≈
0, and using eq.3 the envelop analysis of yi can be written as
follows:

Myiyi
(α) =

1

T

(

∑

k∈Z

δ(α−
k

Ti

)

)

Φi(α)Mxixi
(α) (10)

4. SIMULATION STUDY

4.1. Simulation Model

Synthetic EMG signals are generated using an EMG MUAP

library template. Fig.1 shows a time plot of this signal. From

now on, in order to clearly identify their contributions, let

N = 3 be their number with firing rates, expressed in Hz:

FRi = [10, 12, 15] ∀i ∈ {1, 2, 3}.
Signals are computed using various jitter levels as a rate of

the Clamann’s law (eq.5): 10%si , 50%si and 100%si with-

out noise; 100%si with 10dB noise.
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Fig. 1. Representation of the simulated EMG signal with

three active MUAPs and 10dB Gaussian noise added.
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Fig. 2. Fourier transform of the simulated signal with a) 10%

b) 50% c) 100% of Clamann’s law in the unnoisy case and d)

100% of Clamann’s law with 10 dB Gaussian noise added.

4.2. Envelope Analysis

The envelope analysis Mxx (α) of the previously simulated

MUAPt using eq.7, is computed without noise and with a

10dB additive noise. Fig.2 and Fig.3 show plots of the

Fourier transform and the Fourier transform of the envelop,

respectively. We limit the frequency axis to 40Hz in order to

view the mean firing frequencies and their first harmonics.

In the noiseless case, Fourier transform of Fig.2(a-c) ex-

hibits only a small peak at 15Hz corresponding to the firing

frequency of the third MU, but with a 10dB noisy signal all

significant peaks in the Fourier transform are buried in noise

as shown in Fig.2d. We observe that EMG spectra are ener-

getical for frequencies above 20 Hz. This is verified for all

the graphs in Fig.2a-d. As a consequence, the harmonics are

found to be predominant for low percentage values of the Cla-

mann’s law (2a). Increasing the σi values will make the peri-

odicity disappear and the harmonics vanish. On the contrary,

the envelop analysis, in Fig.3, improves the low frequency

identification and one can easily identify on noiseless figures

the contributions of the three motor units. This is essentially

due to the low pass filter effect of the jitter functions (eq.10)

annihilating the high frequency parts of the spectrum. From

Fig.3a to c, the increasing of jitter rates decreases the har-

monic firing rates. This is due to the −3dB cut-off frequen-

cies of the filter, Φi(α) in eq.10, that decrease from 230 Hz

to 46 Hz and 23 Hz in the case of 10%, 50% and 100% of
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Fig. 3. DCS of the same signal with a) 10% b) 50% c) 100%

of Clamann’s law in the unnoisy case and d) 100% of Cla-

mann’s law with 10 dB Gaussian noise added - Normalised

Amplitude (N.A.) y-axis.

Clamann’s law, respectively (cut-off frequency values corre-

sponding to the highest 15 Hz MUAPt frequency). This also

explains the decreasing of power by 1.4 concerning the fun-
damental frequencies.

5. REAL EMG STUDY

5.1. EMG Signals and protocols

Real intramuscular EMG (iEMG) signals were provided by

EMGLab [13]. One signal is selected with constant percent-

age of maximum voluntary contraction (10%MVC) and un-

der isometric condition, recorded using bipolar fine-wire elec-

trodes on the right biceps brachii muscle. Each pair was in-

serted with a depth of 10mm under the brachial biceps belly

and are separated by a distance of 10-15mm. The mono-polar

signals were referenced to a skin electrode located over the

ulna bones close to the wrist. Both signals were amplified

with a gain of 5000, band-pass filtered from 3Hz to 3kHz and

recorded with a sampling rate of 8kHz. A dynamo-meter was

used to control the muscle force that ensured a low ripple dur-

ing 10s of measurement. A 15s rest before each measurement
and a two minutes break between two different force levels

are realised in order to avoid muscle fatigue effects.
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Fig. 4. Representation of the real iEMG signal named R00701

(10%MVC).

MU Tfr(ms) σTfr
(ms) Ffr(Hz)

1 89.25 8.30 11.30
2 93.25 8.28 10.81
3 85.24 9.36 11.87
4 91.91 8.33 10.97
5 75.42 6.48 13.36

Table 1. Statistical analysis of R00701 signal.

5.2. Decomposition Statistical Analysis

Real iEMG signals can be decomposed using pattern match-

ing methods in order to retrieve their single motor units com-

ponents. The R00701 signal was manually decomposed using

the EMGLab(V1.03) software [14] and firing patterns were

statistically analyzed in order to assess the mean firing rate

and jitter standard deviation. Figure 4 shows the first hundred

milliseconds of the EMG signal, with its MUAP markers.

The decomposition of the R00701 signal reveals five ac-

tive motor units, identified by their number on Fig.4. Table

1 shows, for each detected MU (corresponding number re-

ported in column 1), the mean ISI value, the standard devi-

ation of the ISI sequence and the mean firing rate in column

two, three and four respectively. A minimum of hundred re-

alizations for each MU ensured a correct estimation of both

mean and standard deviation values.

The mean firing rates were computed using the inverse

ISI values: Ffr = 1
M

∑M

j=1
1

ISIj
where M is the number of

MUAP occurrences.

5.3. Envelope Analysis

The Fourier transform and the DCS (eq.4), are computed and

plotted on Fig.5 and Fig.6 respectively.

Similarly to the analysis in the simulation case, the firing

frequency peaks are buried in noise in the Fourier transform

(Fig.5) and do not reveal the firing rates.

Fig.6 contains spectral lines with a first amount of data

concentrated around the frequency range from 10Hz to

12.5Hz. The mean firing frequency values reported in ta-

ble 1 are contained within the same frequency range excepted

for the last MU located at 13.36Hz. A second amount of data

0 10 20 30 40
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. 
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²/

H
z
)

Fig. 5. Fourier transform of the R00701 iEMG signal.
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Fig. 6. Degree of cyclostationarity of the R00701 iEMG sig-

nal.

from 20Hz to 26Hz corresponds to the first harmonics range,

and finally, a third one corresponds to the second harmonics

range. It can be observed that, contrary to the first frequency

range from 10Hz to 12.5Hz, spectral lines are clearly spread

over their first and second harmonics frequency range. Fig.7

is a zoom of Fig.6 around frequency range [10, 12.5]Hz and

the expected frequency values are represented with labeled ar-

rows. One observes in Fig.4 that MUAPs 4 and 5 have lower

amplitude than the others and that explains the difficulty to

find these harmonics in the DCS.

6. DISCUSSION

In [15] it is shown that the power spectrum of the rectified sig-

nal, which is an approximation of the envelop, enhances the

low-frequency peaks, but there is no theoretical justifications

on this. Using the single spike train model of eq.6, the authors

of [11] show that the signal is not periodic, but second-order

periodic due to the jitter. That means the power spectrum den-

sity (eq. 9) does not reveal any periodicity hence the need of

a second order analysis tool such as CSD or envelop analysis.

They show that the CSD (eq.8) gives a line spectrum along

cyclic frequencies at the mean MU firing rates and, hence, it

becomes a useful tool in order to reveal the second order peri-

odicities. Finally, they prove that the envelop analysis is equal

to the integration of the CSD along the spectrum frequencies;

hence, ideally, the envelop analysis exhibits a spectrum line at

the mean firing rates. In this work [11], it has been also the-

oretically proven, in eq.10, that the random jitter acts only as

a low-pass filter in the envelop analysis making use of short

time Fourier transform or wavelet analysis more complex; the

authors show also that the firing frequencies can be revealed

using a cyclo-stationary analysis in comparison to classical

Fourier transform.

In practice, probably due to the highly stochastic nature
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Fig. 7. DCS of the R00701 iEMG signal - Zoom. The mean

FR values of table 1 are reported on the graph.

of data, one observes a degradation of the line spectrum and

thus, a lack of precision of the estimated mean firing rate, as

one can see in Fig.3 and Fig.7. Furthermore, since the jitter

acts as a set of low-pass filters which cut-off frequencies fall

in the same frequencies as the mean firing rates, the harmonic

magnitudes are strongly attenuated. Jitter has a low-pass fre-

quency approximately equal to the mean firing rates which

strongly decreases the harmonics magnitude.

These limitations prevent a correct analysis of a high num-

ber of active MUs. At the time being, the method is effec-

tive for analyzing a small number of active MUs, i.e., for low

MVC level (about 10%MVC in the case of bipolar iEMG

signals). Implementation of a more advanced approach is

necessary to identify MUs activity in a higher level of con-

traction.

As a conclusion, we showed in this paper that we were

able to retrieve individual firing rates, first, theoretically,

by an envelope analysis based on an appropriate model of

MUAPt, and second, by estimating the envelope on synthetic

signals, when a small number of active MUs is considered,

and on real data, by identifying FR values that were previ-

ously measured on temporal data.
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[5] J.S. Karlsson, N. Östlund, B. Larsson, and B. Gerdle,

“An estimation of the influence of force decrease on the

mean power spectral frequency shift of the emg during

repetitive maximum dynamic knee extensions,” Journal

of Electromyography and Kinesiology, vol. 13, no. 5, pp.

461–468, Oct. 2003.

[6] E Serpedin, F Panduru, I Sari, and Georgios B. Gian-

nakis, “Bibliography on cyclostationarity,” Signal Pro-

cessing, vol. 85, no. 12, pp. 2233–2303, Dec. 2005.

[7] H. Peter Clamann, “Statistical analysis of motor unit

firing patterns in a human skeletal muscle,” Biophysical

journal, vol. 9, no. 10, pp. 1233–51, Oct. 1969.

[8] W. R. Bennett, “Statistics of regenerative digital trans-

mission,” The Bell System Technical Journal, vol. 1, pp.

1501–1542, 1958.

[9] Roger Boustany and Jérôme Antoni, “Cyclic spectral
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