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ABSTRACT

Phenotype discrimination problems in biomedicine typically

classify between types of pathology, stages of disease, re-

sponse to treatment or survivability. In contrast to the usual

heuristic classifier and error estimate computed from small

sample data, recent work proposes a Bayesian modeling

framework over an uncertainty class of feature-label distri-

butions, which when combined with data facilitates opti-

mal MMSE error estimation, optimal classifier design and

a sample-conditioned MSE for error estimation analysis, all

relative to uncertainty in the underlying distributions con-

ditioned on the sample. Here we address application of

the conditional MSE to non-linear classifiers and present an

example with optimal Bayesian classification and censored

sampling, an economical sampling procedure in which data

are collected incrementally until desired criteria are met.

Index Terms— Bayesian estimation, minimum mean-

square error, classification error, genomics, small samples

1. INTRODUCTION

The use of microarrays, next-generation sequencing and

other high-throughput genomic and proteomic technologies

is largely constrained by cost and the inherent difficultly of

obtaining large biological samples for phenotype classifier

training. It is precisely this kind of small-sample setting

where classifier error estimation accuracy becomes a criti-

cal issue because it is the primary measure of the scientific

validity of a classifier model, and accurate estimation is far

from guaranteed. Indeed, classical classifier error estimation

methods, such as cross-validation and bootstrap, are typically

heuristic methods, with a number of studies demonstrating

poor performance under small-sample high-throughput con-

ditions [1, 2]. We focus on the MSE or its square root, the

root-mean-square (RMS), as a measure of validity.

Classical error estimator analysis conditions on a fixed

distribution and averages over the corresponding sampling

distribution. Since the true distribution is usually unknown

in practice, one may turn to “distribution free” bounds on er-

ror estimator accuracy. However, there are only a few cases

where such bounds are available, and even when available

these are typically too loose to be useful. For example, con-

sider the following distribution free RMS bound for the leave-

one-out error estimator with the discrete histogram rule and

tie-breaking in the direction of class 0 [3]:

RMS(ε̂loo|F ) ≤
√

1+6/e
n + 6√

π(n−1)
, (1)

where F is the feature-label distribution and n is the sample

size. One needs at least n = 200 points to achieve a bound of

0.506. Accurate distribution-free small-sample error estima-

tion is an illusion [4].

Given the necessity of distributional assumptions, why

not state them outright and fully integrate them into the anal-

ysis? This is precisely what is accomplished in a recent

Bayesian framework for classification [5]. Rather than con-

dition on an unknown distribution with uncertainty relative

to the sampling distribution, we condition on the observed

sample in hand with uncertainty now relative to the unknown

feature-label distribution. The theory facilitates the optimiza-

tion and analysis of both error estimation and classification,

resulting in the Bayesian MMSE error estimator (BEE) and

the optimal Bayesian classifier (OBC) [5]. Perhaps more

importantly, we can assess the accuracy of an arbitrary error

estimator via the sample-conditioned RMS [6], which ad-

dresses exact performance given the observed data, trained

classifier and computed error estimate in hand.

Although closed form solutions for the conditional RMS

have been found for Gaussian models under linear classifi-

cation [6], OBCs found under the same models are gener-

ally non-linear, necessitating efficient methods to evaluate the

conditional RMS under classifiers of arbitrary form. In this

work, we present a novel method to address this problem. It

thus becomes practical to evaluate not only the optimal clas-

sifier and BEE of any classifier under Gaussian models, but

also the conditional RMS of any classifier and error estimator

pair. A thorough review of recent work based on the Bayesian

framework is given in Section 2, followed by an overview of

the Gaussian model in Section 3. Section 4 outlines the pro-

posed method. Finally, in Section 5 we provide an example

application in censored sampling, where sample points are ac-

quired incrementally until the estimated error and conditional

RMS reach desired levels.
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2. REVIEW OF THE BAYESIAN FRAMEWORK

Consider a binary classification problem with sample space

X and class labels 0 and 1. We denote the a priori probability

that a point is from class 0 by c and the class-y-conditional

distribution, y ∈ {0, 1}, by fθy (x|y), where x ∈ X is a fea-

ture vector and θy is a fixed parameter. The feature-label dis-

tribution is completely characterized by θ = [c, θ0, θ1].
The misclassification rate of classifier ψ : X → {0, 1}

is the probability of mislabeling a sample point, which is de-

fined relative to the underlying feature-label distribution. For

a fixed parameter, θ, and fixed classifier, ψ, the true error is

ε(θ, ψ) = cε0(θ0, ψ) + (1− c)ε1(θ1, ψ), (2)

where εy is the probability of mislabeling a class y point, i.e.,

εy(θy, ψ) =
∫
{x∈X :ψ(x)�=y} fθy (x|y)dx. For a fixed θ, the

optimal classifier, or Bayes classifier, is:

ψBayes (x) =

{
0 if cfθ0 (x|0) ≥ (1− c)fθ1 (x|1) ,
1 otherwise.

(3)

In practice the feature-label distribution is unknown, so

that we must train a classifier and estimate the error with

data. The Bayesian framework assumes a parameterized un-

certainty class of feature-label distributions, i.e., we define pa-

rameter spaces such that c ∈ [0, 1], θ0 ∈ Θ0 and θ1 ∈ Θ1. Us-

ing either a non-informative approach or expert information,

we assign a “prior” distribution to θ. To facilitate analytic

representations, we assume that c and [θ0, θ1] are independent

prior to observing the data, and denote the marginal priors by

π(c), π(θ0) and π(θ1). After observing the sample, the priors

are updated to posterior densities, π∗(c), π∗(θ0) and π∗(θ1),
where independence is preserved. Throughout, let Sn be a

sample of size n drawn from the sample space X , and let ny

denote the number of points in each class y ∈ {0, 1}.

Given a beta prior on c with hyperparameters α and β,

a special case being when α = β = 1 for uniform c, then

for a random sample π∗(c) is still beta with hyperparameters

α∗ = α + n0 and β∗ = β + n1. Furthermore, the posterior

probability that a sample point is from class 0 is

ĉ(Sn) ≡ Eπ∗ [c] = α∗
α∗+β∗ = n0+α

n+α+β , (4)

where Eπ∗ is a conditional expectation given the sample.

The posterior distribution for θy , y ∈ {0, 1}, is

π∗(θy) ∝ π(θy)
∏ny

i=1 fθy (x
y
i |y),

where xy
i is the ith sample point in class y and the prod-

uct on the right is the usual “likelihood function.” The con-

stant of proportionality is found by normalizing the integral

of π∗(θy) to 1. When the prior density is proper this follows

from Bayes’ rule, and if π(θy) is improper this is taken as a

definition. Two important models for the θy have been con-

sidered: multinomial distributions with Dirichlet priors on the

bin probabilities (henceforth referred to as the discrete model)

and Gaussian distributions with normal-inverse-Wishart pri-

ors on the mean and covariance pair (the Gaussian model).

As a modeling assumption, priors quantify the uncertainty

we have about the distribution before observing the data. We

have the option of using non-informative or flat priors, as

long as the posterior is normalizeable. Alternatively, infor-

mative priors can supplement the classification problem with

expert information to make the problem tractable or to im-

prove performance with distributional information when the

sample size is small. This is key for problems constrained

by a lack of information or expensive information. Whatever

prior is used, it has been proven in [7] that under mild regu-

larity conditions the posteriors converge to delta functions on

the true parameters for both the discrete and Gaussian mod-

els. More informative priors may help the posteriors converge

faster, but as long as the prior does not exclude the true distri-

bution as impossible, convergence is assured.

2.1. Bayesian MMSE Classifier Error Estimation

A Bayesian error estimator is a classical MMSE estimator,

equivalent to the conditional expectation of the true error

given observed measurements. Given a sample, Sn, and any

fixed classifier, ψ, the BEE (a function of Sn and ψ) for the

true classifier error (a function of θ and ψ) is

ε̂ (Sn, ψ) = Ec,θ0,θ1 [ε(θ, ψ)|Sn]

= ĉ(Sn)ε̂
0 (Sn, ψ) + (1− ĉ(Sn))ε̂

1 (Sn, ψ) , (5)

where we have used the posterior independence between c
and [θ0, θ1]. We also define ε̂y (Sn, ψ) = Eπ∗ [εy(θy, ψ)],
which may be viewed as the posterior probability of incor-

rectly labeling a class y point. When the prior probabilities

are improper, this is called the generalized BEE. To evaluate

the BEE, ĉ(Sn) depends on our prior model for c, see for in-

stance (4), and ε̂y(Sn, φ) can be found using the following

theorem, originally proved in [5].

Theorem 2.1 Let ψ be a fixed classifier given by ψ (x) = 0
if x ∈ R0 and ψ (x) = 1 if x ∈ R1, where R0 and R1 are
measurable sets partitioning the sample space. Then

ε̂y(Sn, ψ) =
∫
R1−y

f (x|y) dx,
f (x|y) = ∫

Θy
fθy (x|y)π∗ (θy) dθy. (6)

The Bayesian error estimator has been solved in closed

form for both discrete models under arbitrary classifiers and

Gaussian models under linear classifiers. When closed-form

solutions are not available, the expected error of a classifier

may be found via Monte-Carlo integral approximation by

drawing a large synthetic sample from the effective densities

f (x|y) and evaluating the proportion of misclassified points.

Classical frequentist consistency also holds for Bayesian er-

ror estimators on fixed distributions in the parameterized

2
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family owing to the convergence of posteriors in both the

discrete and Gaussian models [7]. A number of practical

considerations for Bayesian error estimation have also been

addressed, including robustness to false modeling assump-

tions and application to microarray data analysis [8], where

priors are calibrated with a method-of-moments approach us-

ing features from the microarray dataset that are discarded by

feature selection. Performance is often superior to classical

error estimation schemes on real gene expression data.

2.2. Optimal Bayesian Classification

An optimal Bayesian classifier (OBC) is defined to be any

classifier that minimizes the expected error:

ψOBC = arg inf
ψ∈C

Eπ∗ [ε (θ, ψ)] = arg inf
ψ∈C

ε̂ (Sn, ψ) , (7)

where C is an arbitrary family of classifiers. If C is the set of

all classifiers with measurable decision regions, then the fol-

lowing theorem, originally proved in [5], states that the op-

timal classifier is equivalent to the Bayes classifier under the

effective model.

Theorem 2.2 An OBC classifier, ψOBC, satisfying (7), where
C is the set of all classifiers with measurable decision regions,
exists and is given pointwise by

ψOBC (x) =

{
0 if ĉ(Sn)f (x|0) ≥ (1− ĉ(Sn))f (x|1) ,
1 otherwise,

where f (x|y) is defined in (6).

We call f (x|y) the effective class-conditional density,

which is a pointwise average of the class-conditional densi-

ties fθy (x|y) considered in the model and depends on the

sample because it depends on π∗. When we substitute ĉ(Sn)
for the true a priori probability of a class 0 point, c, and

f (x|y) for the true class-conditional density, fθy (x|y), for

both y = 0 and y = 1, then the BEE for any classifier is

solved by finding the misclassification error of the classifier

under the effective model, and the OBC is solved by finding

the Bayes classifier under the effective model.

OBCs have been solved in closed form for both the dis-

crete and Gaussian models [5]. A number of important prop-

erties have also been shown, including invariance to invertible

transformations, pointwise convergence to the Bayes classi-

fier, and robustness to false modeling assumptions.

2.3. Bayesian Sample-Conditioned MSE

The sample-conditioned MSE of a BEE ε̂ quantifies the ac-

curacy of ε̂ as an estimator of ε, conditioned on the actual

sample in hand. It is defined as [6],

MSE(ε̂(Sn, ψ)|Sn) = Eπ∗ [(ε (θ, ψ)− ε̂(Sn, ψ))
2
]

= Varπ∗ (ε(θ, ψ)) . (8)

The BEE is the first moment of the true error and the condi-

tional MSE is the second central moment, both conditioned

on the observed sample. Thanks to the posterior indepen-

dence between c and [θ0, θ1], we decompose the conditional

MSE via the basic variance identity,

MSE(ε̂(Sn, ψ)|Sn) = (ε̂0(Sn, ψ)− ε̂1(Sn, ψ))
2Varπ∗ (c)

+ Eπ∗
[
c2
]
MSE(ε̂0(Sn, ψ)|Sn)

+ Eπ∗
[
(1− c)2

]
MSE(ε̂1(Sn, ψ)|Sn),

where MSE(ε̂y(Sn, ψ)|Sn) = Varπ∗ (εy(θy, ψ)). Moments

related to c depend on our prior model for c, but are straight-

forward to find for a given posterior π∗(c). Furthermore,

MSE(ε̂y(Sn, ψ)|Sn) = Eπ∗
[
(εy(θy, ψ))

2
]
− (ε̂y(Sn, ψ))

2
,

so that the conditional MSE reduces to finding ε̂y (a part of

the BEE) and Eπ∗ [(εy(θy, ψ))
2
] for both classes. The sample-

conditioned MSE for a BEE converges to zero almost surely

for both discrete models under arbitrary classifiers and Gaus-

sian models under linear classifiers, where closed form ex-

pressions for the MSE are also available [7].

The conditional MSE for an arbitrary error estimate,

ε̂•(Sn, ψ), can also be evaluated from a given sample:

MSE(ε̂•(Sn, ψ)|Sn)

= MSE(ε̂(Sn, ψ)|Sn) + (ε̂(Sn, ψ)− ε̂•(Sn, ψ))
2. (9)

Note the optimality of Bayesian error estimation.

Consider a typical classification scenario in which we

train a classifier from data and use the same data to estimate

the error of this classifier. A key question arises: How close

is the estimate to the actual error? Whereas in a classical

distribution-free approach nothing can be said given a single

sample, the Bayesian approach answers this question with the

sample-conditioned MSE. The sample conditions uncertainty,

and different samples condition it to different extents.

3. THE GAUSSIAN MODEL

Suppose each sample point is a column vector of D features,

where the class-y-conditional distribution is Gaussian with

parameter θy = [μy,Σy], μy being the mean and Σy the co-

variance. The parameter space of Σy consists of all positive

definite (valid covariance) matrices. Herein we assume θ0 and

θ1 are independent prior to observing the data, although a ho-

moscedastic covariance model has also been treated in [5].

We assume a conjugate prior where Σy is invertible with

probability 1, and for invertible Σy we have

π(θy) = π(μy|Σy)π(Σy), (10)

where given hyperparameters consisting of a constant νy ,

constant κy , length D vector my and D ×D matrix Sy ,

π(μy|Σy) ∝ |Σy|− 1
2 exp

(− νy

2 (μy −my

)T
Σ−1

y (μy −my))

π(Σy) ∝ |Σy|−
κy+D+1

2 exp
(− 1

2 trace
(
SyΣ

−1
y

))
.

3
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If νy > 0, κy > D − 1 and Sy is positive definite, then this

is a proper prior [9] where π(μy|Σy) is Gaussian with mean

my and covariance Σy/νy and π(Σy) is an inverse-Wishart

distribution such that Eπ[Σy] = Sy/(κy −D − 1).
It can be shown that the posterior, π∗(θy), has the same

form as the prior with updated hyperparameters ν∗y = νy+ny,

κ∗
y = κy + ny , m∗

y =
νymy+nyμ̂y

νy+ny
, and

S∗
y = Sy + (ny − 1)Σ̂y +

νyny

νy+ny
(μ̂y −my)(μ̂y −my)

T ,

where μ̂y and Σ̂y are the usual sample mean and covariance,

respectively, of the ny points in class y. The posteriors are

proper if ν∗y > 0, κ∗
y > D − 1 and S∗

y is positive definite.

The effective density is a multivariate student’s t dis-

tribution having location vector m∗
y , scale matrix Ψy =

ν∗
y+1

(κ∗
y−D+1)ν∗

y
S∗
y and ky = κ∗

y −D + 1 degrees of freedom:

f (x|y) ∝
(
1 + 1

ky

(
x−m∗

y

)T
Ψ−1

y

(
x−m∗

y

))− ky+D

2

.

As long as π∗ is proper, the effective density is also proper.

The OBC classifier can be expressed as ψOBC(x) = 0 if

gOBC(x) ≤ 0 and ψOBC(x) = 1 if gOBC(x) > 0, where

gOBC(x) = K
(
1 + 1

k0
(x−m∗

0)
T
Ψ−1

0 (x−m∗
0)
)k0+D

−
(
1 + 1

k1
(x−m∗

1)
T
Ψ−1

1 (x−m∗
1)
)k1+D

,

K =
(

1−ĉ(Sn)
ĉ(Sn)

)2 (
k0

k1

)D |Ψ0|
|Ψ1|

(
Γ(k0/2)Γ((k1+D)/2)
Γ((k0+D)/2)Γ(k1/2)

)2

.

This classifier has a polynomial decision boundary whenever

κ0 and κ1 are integers. In particular, although we only con-

sider Gaussian distributions in our model, the OBC is not nec-

essarily linear or even quadratic.

4. EVALUATING THE CONDITIONAL MSE

To evaluate the conditional MSE of the BEE for classifier ψ,

Eπ∗
[
(εy(θy, ψ))

2
]
=

∫
R1−y

∫
R1−y

g(x, z)dxdz, (11)

where g(x, z) is a valid joint density function:

g(x, z) =
∫
Θy

fθy (x|y)fθy (z|y)π∗(θy)dθy.

For the Gaussian model, after some simplification,

g(x, z) ∝
∣∣∣ 2ν∗

y

ν∗
y+2

(
x+z
2 −m∗

y

) (
x+z
2 −m∗

y

)T
+ 1

2 (x− z) (x− z)
T
+ S∗

∣∣∣−κ∗+2
2

.

Applying a change of variables, a =
√

ν∗
y

2ν∗
y+4 (x+ z) −√

2ν∗
y

ν∗
y+2m

∗
y and b = 1√

2
(x− z), we obtain a new density

h(a,b) ∝ ∣∣aaT + bbT + S∗∣∣−κ∗+2
2 . (12)

The marginal density of b is a multivariate student’s t dis-

tribution with zero mean, κ∗ − D + 1 degrees of freedom

and scale matrix 1
κ∗−D+1S

∗. The conditional density of a
given b is also a multivariate student’s t distribution with

zero mean, κ∗ −D + 2 degrees of freedom and scale matrix
1

κ∗−D+2

(
bbT + S∗).

To evaluate the conditional MSE for arbitrary classifiers

under a Gaussian model when closed-form solutions are un-

available, we may first draw a large synthetic sample from

the marginal of b, draw a single realization a for each b us-

ing the conditional density, and finally apply the following

inverse transformation to each (a,b) pair:

x = m∗
y +

√
ν∗
y+2

2ν∗
y
a+ 1√

2
b, z = m∗

y +

√
ν∗
y+2

2ν∗
y
a− 1√

2
b.

Effectively, this procedure generates a large synthetic sample

from the joint density g (x, z). Then, (11) is approximated by

evaluating the proportion of pairs for which both ψ(x) 	= y
and ψ(z) 	= y, i.e., both points are misclassified.

5. CENSORED SAMPLING

Given a method to approximate the conditional MSE, it is

now possible to apply censored sampling with non-linear

classification like the OBC. An example is provided in

Fig. 1 for a synthetic Gaussian model with D = 2 features,

c = 0.5 and known “medium information” priors for θ0 and

θ1 from [7]. In all simulations, distributions are drawn ran-

domly from the prior, with an average Bayes error of 0.158.

Part (a) demonstrates a typical distribution (level curves with

dotted black lines), sample (class 0 marked with ‘o’ and 1

with ‘x’), estimated densities (level curves with dashed blue

lines), and decision boundaries for the Bayes classifier, linear

discriminant analysis (LDA), quadratic discriminant analy-

sis (QDA) and the OBC. For LDA, parts (b) and (c) show a

probability density of the conditional RMS for fixed random

samples with n = 60 (the average true error is 0.170 and the

square root of the average MSE is 0.0295) and a probability

density of the censored sample size (the average true error is

0.169, the root of the average MSE is 0.029, and the average

sample size is 62.1), respectively. In our implementation of

censored sampling, each sample is initialized with 2 points

in each class, and 4 points with random labels are added in

each iteration up to a maximum of 160 points. The stop-

ping criteria are RMS(ε̂|Sn) ≤ 0.0295 (corresponding to

the root of the average MSE with LDA and n = 60 fixed),

RMS(ε̂y|Sn) ≤ 0.0295 × 2, ε̂ ≤ 0.3, and ε̂y ≤ 0.35, for

y ∈ {0, 1}. Parts (d) and (e) are analogous for OBC. In (d)

the average true error is 0.162 and the root of the average

MSE is 0.0288, and in (e) the average true error is 0.165, the

root of the average MSE is 0.0258, and the average sample

size is 35.8.

The average Bayes error for this model is well below 0.3,

so in most cases the conditional RMS determines the censored

4
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Fig. 1. Classification with D = 2 features, c = 0.5 and

medium information priors. (a) Example classifiers, n = 60;

(b) Density of conditional RMS, LDA, n = 60; (c) Density of

censored sample size, LDA; (d) Density of conditional RMS,

OBC, n = 60; (e) Density of censored sample size, OBC.

sample size. Observe for LDA that both fixed and censored

sampling result in roughly the same unconditional RMS and

average sample size. We trade certainty in sample size and

uncertainty in performance for uncertainty in sample size and

certainty in performance. Applying the same censored sam-

pling criteria with OBCs results in a smaller average error and

much smaller sample size on average relative to LDA.

6. CONCLUSION

There are numerous benefits to a Bayesian framework: it can

easily integrate expert knowledge or target moderately dif-

ficult classification problems with Bayes errors in the mid

range [8], it facilitates optimal expected error classification

and MMSE error estimation. It also gives rise to the sample-

conditioned MSE, a new and practical tool to measure error

estimation accuracy with important applications in censored

sampling. This work extends the theory further with a practi-

cal method to approximate the conditional MSE under Gaus-

sian models when closed form solutions are not available.
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