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ABSTRACT

This paper considers the challenging problem of Cartesian
tracking of multiple sources using multiple distributed mi-
crophone arrays when the number of sources is unknown and
varies with time due to new sources appearing and existing
sources disappearing or undergoing long silence periods. The
problem is posed in a bearings-only tracking framework.
Frequency-domain independent component analysis (ICA)
in conjunction with state coherence transform (SCT) is used
as a robust method to extract the bearing information of the
speakers. Also, by exploiting the frequency sparsity of the
sources, ICA/SCT has proven to be effective even when the
number of simultaneous speakers is larger than the number
of microphones in an array. Next, the bearing information
for each array is fused using a sequential-corrector proba-
bility hypothesis density (PHD) filter with a limited field of
view (FOV) for each microphone array. The limited FOV
is essential for applications like speech in order to account
for the more distant sources not registering detections with
respect to a sensor array. The promising tracking capability
of the proposed method is demonstrated using simulations of
multiple speakers in a reverberant environment.

Index Terms— Independent component analysis, source
localization and tracking, multi-target multi-source tracking,
probability hypothesis density filter

1. INTRODUCTION

Passive localization and tracking of multiple acoustical
sources is of great interest in the field of microphone arrays
which is driven by applications such as automatic camera
steering for teleconferencing and surveillance. Speaker local-
ization is also very useful in aiding systems achieving the task
of separating concurrent speakers or a desired speaker from
background interference with applications in high-quality
hearing aids, speech enhancement and noise reduction for
smart phones, among others. By localization, one can refer to
finding the bearings of the speakers or their Cartesian coordi-
nate. In this paper we are particularly interested in estimating
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the Cartesian location information by means of triangulation
of the directions of arrival (DOA) calculated from multiple
distributed sensor arrays.

Multiple DOA estimation using frequency domain inde-
pendent component analysis (ICA) was first proposed in [1].
In the context of blind source separation (BSS), ICA is a
well known tool for the separation of linear and instantaneous
mixed signals picked up by multiple sensors [2]. ICA esti-
mates a de-mixing matrix for the separation task. For many
real world problems, the signals undergo a convoluted mix-
ing due to reverberation. By transforming the mixture to the
frequency domain by use of the short-time Fourier transform
(STFT), convolution in the time domain translates to linear
mixing in the frequency domain. Subsequently, ICA can be
performed on every single frequency bin. Since ICA is in-
determinate of source permutation, further post processing
methods are necessary to correct for possible permutations
of the separated sources in each frequency bin. In [1], mul-
tiple DOAs are calculated directly from the columns of the
estimated mixing matrix. However, this method works well
only if the possible source permutations in the frequency bins
have been corrected and there are no frequency bins affected
by spatial aliasing. An extension to [1] has been proposed
under the name of state coherence transform (SCT) that does
not require permutation correction and is insensitive to spatial
aliasing [3]. One attractive feature of SCT is that by exploit-
ing the frequency sparsity of the sources, it is effective even
when the number of simultaneous sources is larger than the
number of sensors in an array.

In many real world problems, not only can the sources
experience spatial dynamics, they can also experience tem-
poral dynamics where the number of concurrent sources is
unknown and varies with time due to new speakers appearing
and existing speakers disappearing or undergoing long silence
periods. Moreover, the sensors can receive a set of spurious
detections (clutter) due to the multi-path propagation caused
by reverberation and spatial aliasing. In our previous work,
we have proposed an algorithm that can track the DOAs of
the sources in such scenarios using a single sensor array by
synergistically combining two key ideas, one in the front-end
and the other at the back-end. In the front-end, it employs
ICA to demix the mixtures and the SCT to represent the sig-
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nals in a DOA detection framework. At the back-end, the
probability hypothesis density (PHD) filter is incorporated in
order to track the multiple DOAs and determine the number of
sources. The PHD filter is based on random finite sets (RFS)
where the multi-target states and the number of targets are
integrated to form a set-valued variable with uncertainty in
the number of sources. A Gaussian mixture implementation
of the PHD filter (GM-PHD) [4] is utilized that solves the
data association problem intrinsically, hence providing dis-
tinct DOA tracks [5, 6]. There, it is shown that the ICA-SCT-
PHD filtering approach outperforms other RFS-based meth-
ods which use the generalized cross-correlation phase trans-
form (GCC-PHAT) in the front-end to obtain the measure-
ments.

In this paper we extend our previous work to the multi-
ple distributed sensor array case in order to triangulate and
track the Cartesian location of the sources by posing it as a
bearings-only tracking problem. One typical and practical
method that is used to fuse the data obtained from multiple
sensor arrays is sequential-sensor updating in the PHD filter
update stage [7, 8, 9]. In such problems with mostly applica-
tion in radar signal processing, it is usually assumed that each
sensor array observes the DOAs from all the sources, i.e. the
fields of view (FOV) of the sensors is not affected much by the
range to the targets/sources, and all that needs to be done is to
fuse the DOA observations across the sensor arrays. However,
for speech sources in a room environment, such an assump-
tion is not satisfied as a set of sources might not register as
DOA observations by a set of sensors due to them being dis-
tant, resulting in the derailment of the sequential sensor PHD
update. In this paper we propose a state/sensor dependent
probability of detection scheme that limits the FOV based for
each sensor array based on range, giving more importance to
observations coming from closer sources and less importance
to observations coming from more distant sources. By doing
so we avoid the derailment of sequential PHD update. Com-
puter simulations are carried out that verifies the effectiveness
of the proposed method.

2. FRONT-END: ICA/SCT

We assume there are L microphones in the array and M
sources. After taking the short time Fourier transform (STFT)
of the convolutedly mixed (due to reverberation) signals, the
observations would end up having a linear mixture represen-
tation in each frequency bin k and frame n:

Y (k, n) = H(k)S(k, n) (1)

where sensors Y (k, n) = [Y1(k, n)...YL(k, n)]
T , sources

S(k, n) = [S1(k, n)...SM (k, n)]
T and H(k) is the mixing

matrix corresponding to the kth frequency bin. From here-
after, we will omit the index n for brevity. For the case of
L = M , complex-valued ICA can be applied to each fre-
quency bin to estimate the inverse of the mixing matrix H (k).

Denoting the estimate of the separated sources at the kth bin
as Ŝ(k), from ICA we get

Ŝ(k) = Ŵ (k)Y (k) (2)

where Ŵ (k) denotes the estimate of the demixing matrix
up to scaling and permutation ambiguities. Without loss of
generality, for simplicity, we consider a configuration of two
sources and two sensors. In an ideal anechoic setting the true
mixing matrix can be modeled as

H(k) =

(

|h11(k)|e
−j2πfkT11 |h12(k)|e

−j2πfkT12

|h21(k)|e
−j2πfkT21 |h22(k)|e

−j2πfkT22

)

(3)

where Tqp is the propagation time from the pth source and the
qth microphone and fk is the frequency in Hz for the kth fre-
quency bin. By assuming that an estimate of the mixing matri-
ces can be obtained through ICA [2] and by neglecting multi-
path propagations, the time difference of arrival (TDOA) in-
formation emerges by taking the ratios of the entries of each
column of the mixing matrices and normalizing them with the
magnitudes, hence obtaining

r̄1(k) = e−j2πfk∆̂t1 , r̄2(k) = e−j2πfk∆̂t2 (4)

where ∆̂ti are the TDOAs of the sources with respect to the
microphones. Such ratios are invariant to the scaling ambi-
guities of the estimation process [3]. If the permutation of
the sources can be somehow corrected and if the mixing does
not undergo spatial aliasing, the TDOAs of the sources can
be estimated directly from phase information of (4) by ex-
ploiting the linear relationship between the TDOAs and the
true frequencies along the different bins [1]. However, solv-
ing the permutation problem and dealing with spatial aliasing
can prove to be difficult in practice. SCT is a method that
can sidestep these issues by forming a pseudo-likelihood be-
tween the TDOA observations in (4) and a propagation model
that can intrinsically account for both permutations and spa-
tial aliasing [3]. The propagation model that results in TDOA
of a source with respect to the microphones, denoted as τ , is
assumed to be

c(k, τ) = e−j2πfkτ (5)

The SCT for the configuration of two sources and two micro-
phones is formulated to be

SCT (τ) =
∑

k

2
∑

m=1

[

1− g

(

‖c(k, τ)− r̄m(k)‖

2

)]

(6)

where the transform is scanned for different values of τ and
g(.) is a function of the Euclidian distance. A good option
for g(.) is shown to have a sigmoidal shape such as g(x) =
tanh(αx), where α is a real positive constant that defines the
TDOA sensitivity and is usually set empirically. It can be
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easily understood from (6) that one could expect to see higher
mappings of SCT for values of τ which r̄m(k) and the model
c(k, τ) are closer in some Euclidian form of distance, thus
creating peaks for values of τ matching the TDOAs. One im-
portant feature of SCT is that it is invariant to source permuta-
tions since it jointly utilizes the TDOA information of all the
ratios in (4) across all frequencies. On the other hand, since
the model c(k, τ) incorporates the 2π phase wrap-arounds
(i.e. it is periodic for 2π shifts in τ ) caused by spatial alias-
ing it greatly reduces its sensitivity towards spatial aliasing.
Moreover, one feature of SCT that makes it an attractive plat-
form for tracking unknown time-varying number of sources,
is that it is able to map the TDOA peaks for the underde-
termined or overcomplete case of having more sources than
microphones. This is achieved by partitioning the data (STFT
frames) into small blocks and performing ICA/SCT on each
data block. For example, by exploiting the frequency spar-
sity of the sources (which is typical of speech) in each data
block, and assuming that at each frequency-block segment
at most two sources are active, a complete TDOA mapping
with peaks pertaining to the possible sources becomes possi-
ble. From the far-field assumption, one can convert TDOA
detections into DOA using

θ = cos−1(c∆t/∆q) (7)

where c is the speed of sound and ∆q is the distance between
the microphone pair.

3. BACK-END: PHD FILTERING

Let us consider the multi-target scenario of having M targets
at time t − 1 with states xt−1,1, ..., xt−1,M(t−1) taking val-
ues in the state space X . At the next instance of time, t,
some of the targets can die, some new targets can be born
and the surviving targets can evolve according to some dy-
namic model. This results in M(t) targets at time t with states
xt, ..., xt,M(t) ∈ X . On the other hand, let’s assume that
at time t, the sensor makes N(t) observations (detections)
zt,1, ..., zt,N(t) each taking values in the state space Z . These
detections are ambiguous in the sense that it is not known
whether they have originated from targets or are false detec-
tions (clutter). Moreover, due to the imperfections in the sen-
sor resolution it is possible that a subset of targets are not
detected (missed detections). Assuming that the ordering and
association of the measurements and the state estimates has
no significance, the multi-target states and observations can
be represented as finite sets such as

Xt ={xt, ..., xt,M(t)} ∈ F(X ) (8)
Zt ={zt, ..., zt,N(t)} ∈ F(Z) (9)

where F(X ) and F(Z) are finite subsets of the spaces of
X and Z , respectively. By assuming that the multi-target
RFS state X(t) is the union of surviving targets, spontaneous

births and spawned targets, and the multi-target detection RFS
state Z(t) is the union of target generated detections and clut-
ter, the goal of Mahler’s RFS multi-target filtering [10] is to
estimate the number of targets and their states while rejecting
clutter and accounting for missed detections. With the RFS
formulation, the multi-target Bayesian filter can be computed
sequentially via the prediction and update steps as following

ft|t−1(Xt|Z1:t−1) =

∫

ft|t−1(Xt|X
′)ft−1|t−1(X

′|Z1:t−1)δX
′

(10)

ft|t(Xt|Z1:t) =
ft|t(Zt|Xt)ft|t−1(Xt|Z1:t−1)

∫

ft|t(Zt|X ′
t)ft|t−1(X

′
t|Z1:t−1)δX ′

t

(11)

where Z1:t is the series of all previous measurements up to
time t and δ is an appropriate reference measure on F(X )
which indicates that the integrals are set-integrals. A set-
integral is a non-trivial extension of a regular integral which
is defined as a mixture of regular integrals over all different
subsets of the multi-target states. This accounts for the un-
certainty in the target number which can vary over time as
new targets enter and old ones vanish. Due to the use of com-
binatorial set-integrals in the optimal Bayesian recursions of
(10-11), they involve multiple high dimensional integrals on
the space F(X ) rendering it computationally intractable. The
PHD filter is a suboptimal approximation to the multi-target
Bayesian recursions of (10-11) which instead of propagating
the full posterior density, it propagates the first moment of
multi-target posterior density, known as the posterior inten-
sity [10].

4. MULTI-SENSOR ARRAY GM-PHD FILTER
UPDATE WITH LIMITED FOVS

In the previous two sections we described the front-end
(ICA/SCT) and the back-end (PHD filtering) of our system
model, respectively. The front-end uses the output of ICA to
perform the SCT mapping where peaks that are above some
detection threshold are selected. These peaks are declared as
DOA measurements or detections and are fed into the PHD
filter to recursively estimate the Cartesian location of sources
by posing it as a multi-target bearings-only tracking problem
where the respective state dynamics and sensor model for a
single source are

xt =xt−1 + γt−1 (12)

z
(q)
t =arctan

(

ξt − ξ(q)

ζt − ζ(q)

)

+ wt, q = 1, ..., Q (13)

where xt = [ξt ζt]
T is the state vector of Cartesian coordi-

nates, z(q)t is the DOA observation/detection obtained from
the qth sensor array, γt−1 and wt are independent Gaussian
noises and x(q) = [ξ(q) ζ(q)]T is the location of the qth sensor

3
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array. Since the relationship between the observations and
states in (13) is non-linear the unscented-Kalman (UK) ap-
proximation of the GM-PHD filter needs to be implemented
[4]. The sequential-sensor updating in the update stage of the
GM-PHD filter works as follows1.

Assume that the PHD at time t−1 is vt−1(x). The PHD is
predicted using the state dynamic model to obtain vt|t−1(x).
Then the PHD is updated/corrected by the observation set
Z

(1)
t of sensor array 1 to obtain the update

v
(1)
t (x) = (1− pD,t)vt|t−1(x) +

∑

z∈Z
(1)
t

vD,t(x; z) (14)

where pD,t is the probability of detection usually assumed to
be independent of the state, and the complete formulation of
vD,t(x; z) can be found in [4]. At sensor array 2, v(1)t−1(x) is
used as the predicted PHD for sensor array 2 and the PHD is
updated similar to (14) as follows

v
(2)
t (x) = (1− pD,t)v

(1)
t (x) +

∑

z∈Z
(2)
t

vD,t(x; z) (15)

This cycle is repeated for all the Q sensor arrays. From the
above formulations, pD,t being state independent implies that
each sensor array observes the DOAs from all the sources,
i.e. sensors have identical field of views (FOV). However, for
speech sources in a room, it could be the case where a sen-
sor does not pick up DOA observations from a set of sources
due to them being distant. Hence, updating the sensors us-
ing (14-15) would result in the derailment of the sequential-
sensor PHD updates. To fix this, we propose the use of a
state and sensor location dependent probability of detection
pD,t(x, x

(q)) where a higher probability of detection is as-
signed to sources that are closer to sensor q and a lower one is
assigned to sources that are farther away. This means that the
states are less sensitive to PHD sensor updates for the more
distant sources as less reliable observations about them are
available. We model this behavior by a Gaussian centered at
sensor location x(q) as follows

pD,t(x, x
(q)) = wD,tN(x;x(q), CD,t) (16)

where wD,t and CD,t are given model parameters such that
pD,t(x, x

(q)) lie between 0 and 1 for all x. With such model
for probability of detection the PHD update equation of (14),
and similarly, sensor update equation of (15) are modified to

v
(1)
t (x) =vt|t−1(x)− vD,t(x) +

∑

z∈Z
(1)
t

vD,t(x; z) (17)

v
(2)
t (x) =v

(1)
t (x)− v

(1)
D,t(x) +

∑

z∈Z
(2)
t

vD,t(x; z) (18)

1note that full equations of the GM-PHD filter and the UK approximation
is not presented in this paper due to space limitations. We refer the reader to
[4, 9] for further reading.

where complete formulations for vD,t(x) and vD,t(x; z) can
be found in Equation (51) of [4]. The UK formulations can
also be found in Table V of [4].

5. SIMULATIONS

The proposed method was conducted on simulated data ob-
tained from Lehmann’s image method [11]. Signals were
sampled at fs = 16kHz and the STFT frequency-frame seg-
ments were obtained using a Hanning window of 2048 taps
and 87.5% overlap. The blocks in which the ICA was con-
ducted on had a 50% overlap with each block being about
0.64 seconds in length. The experiment went on for a total
duration of about 17 seconds. The room dimensions were
6m× 4m× 2.5m with a reverberation time of T60 = 300ms.
Only L = 2 microphones being 36cm apart were used for
each sensor array with a total of 6 sensor arrays distributed
across the room. The speakers could appear and disappear at
any time and moved in different directions. There were a to-
tal of 7 different speakers in which at one point all 7 were
active simultaneously. Fig.1 shows the true and estimated
source trajectories in the room along with their activity onset
and offset marks in seconds. The experiment is repeated for
when we assume state independent probability of detections
(without any limited FOV) but results are not shown due to
the very poor performance. This means that the limited FOV
approach has a significant impact on the success of the multi-
sensor PHD filter updater in applications like speech where a
distant speaker with respect to a sensor array does not register
as SCT detections (or if it does the amplitude of the detec-
tion is weak and in the level of the amplitude of the clutter).
However, for other applications like radar signal processing
where most targets are picked up by most sensors a limited
FOV approach similar to what has been proposed here, is un-
necessary. Finally, we note that because of the limited FOV
approach, a source that is farther from most of the sensors,
e.g. the source that is in the top left corner of Fig.1, might
have the least accurate localization as the effective number of
sensors used to carry out the triangulation task is least for that
source.

6. CONCLUSIONS

In this paper we present an extension to our previous work
that allows for Cartesian tracking of sources for unknown
time-varying number of speakers in a reverberant environ-
ment using distributed microphone arrays. For each micro-
phone array we utilize a powerful and versatile ICA-based
scanning method for multiple DOA estimation and then fuse
the DOA detections from multiple sensor arrays using a well
known method in radar/sonar multi-sensor multi-target track-
ing. We limit the FOV for each array allowing for robust
triangulation of the source positions. The proposed method
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Fig. 1. True trajectories (black line), estimated trajectories (colored shapes) along with start (S) and end (E) mark of each source
in seconds.

showed promising results in the tracking task of up to 7 con-
current speakers in reverberant environment using only 2 mi-
crophones for each array and a total of 6 arrays.
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