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ABSTRACT

Energy detection is a simple non-coherent approach used for

spectrum sensing that offers linear computational complex-

ity and low latency. Its main shortcoming is the well-known

noise uncertainty problem, which results in failed detection

in the very low signal-to-noise ratio. In this paper, we give

a theoretical analysis of the noise uncertainty modeling with

energy detection to drive a relationship between bounded and

unbounded uncertainty approximation.

Index Terms— spectrum sensing, energy detector, noise

uncertainty, log-normal approximation, SNRwall

1. INTRODUCTION

Spectrum sensing has been identified as the first step in cogni-

tion cycle, and the most important functionality for the estab-

lishment of cognitive radio [1, 2]. It is performed to find the

spectrum holes which in turn tells that whether the primary

user is present or not. Various spectrum sensing techniques

have been proposed including matched filter method, feature

detection based on Higher-order statistics like cyclostation-

ary detection, energy detection method, and some emerging

methods such as eigenvalue-based sensing and wavelet-based

sensing [3, 4]. The Higher-order statistics based spectrum

sensing detection [5] can effectively separates noise from re-

ceived signals and operates at very low SNR regions. How-

ever it often requires a large number of data to obtain the ac-

curate estimations of the relevant statistics. The energy detec-

tion approach has been widely studied for primary user signal

detection [6]. It is a non-coherent detector and has low imple-

mentation complexity [7, 8]. In addition, the energy detector

does not require any prior knowledge about the primary users

signal. However, the detection efficiency of energy detection

degrades heavily under low signal-to-noise ratio (SNR) and

noise uncertainty conditions [9], which can restrict its effi-

ciency for cognitive radio. There exists an SNRwall value of

the signal-to-noise ratio beyond which detection is theoreti-

cally impossible.

According to Tandra and Sahai paper [10], the error in

estimating the noise power spectral density N0 is assumed

to be bounded. In fact, from practical point of view, N0

would need to be estimated by the detector. So this estimated

value, Ñ0, belongs to [(1+ρ)−1N0, (1+ρ)N0] interval where
10log10(1 + ρ) is the noise uncertainty factor in dB, ρ ≥ 0.
There are several factors that increase noise uncertainty such

as thermal noise change due to temperature and/or calibration

errors. An example given by IEEE 802.22 in [11] shows that

the noise uncertainty may be much larger than 1 dB, and we

can not reduce it by increasing sensing time. In more recent

study [12], Jouini proposes a new results on energy detector

performances when the noise uncertainty is modeled by an

unbounded log-normal distribution. Moreover, new expres-

sion of the SNRwall is presented as a function of the noise

uncertainty parameter.

In this paper, we analyze the energy detector performance

under bounded and unbounded noise uncertainty’s model and

try to obtain a simple relationship between them. The remain-

der of this paper is organized as follows. In Section II, the sys-

tem model of the spectrum sensing is described, and the ideal

energy detection is introduced. In Section III, the bounded

and unbounded noise uncertainty models are presented and

the performances are analyzed. Section IV seeks to find the

relationship between the two uncertainty’s models and some

simulation results are discussed. Finally, we conclude this

study in Section V.

2. SYSTEMMODEL

Spectrum sensing is actually used to identify the presence of

primary users signal in a desired frequency band. In this pa-

per, we consider non-cooperative spectrum sensing model.

The information of the bandwidth is known and a bandpass

filter is used to select the interested bandwidth. In this sec-

tion, a general system model and ideal energy detection are

introduced.
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2.1. Basic hypothesis model

Spectrum sensing can be modeled as a hypothesis test prob-

lem. There are two possible hypotheses H0 andH1:

y(k) =

{

b(k) for H0

x(k) + b(k) for H1
(1)

where hypothesis H0 refers to the presence of vacant fre-

quency bands and hypothesis H1 refers to the presence of

a primary user, y(k) is the received signal by the cognitive

user, b(k) is a white Gaussian noise with zero-mean and vari-
ance σ2

b , x(k) represents a transmitted signal in the given fre-
quency band and assumed to be independent and identically

distributed with zero mean and σ2
x variance. We define the

average signal-to-noise ration as SNR= σ2
x/σ

2
b .

2.2. Energy detector

The discrete-time received signal can be represented in vector

notation by y = [y(1), y(2), ..., y(M)]. The energy detector
utilizes square of the magnitude of the received data samples

to acquire received signal energy and this estimated energy

is compared with the threshold λ and the decision is made

whether the signal is present or not as follows:

TED =
1

M

M
∑

k=1

|y(k)|2 (2)

=

{

> λ underH1

< λ underH0

The threshold λ is obtained for a given probability of false

alarm Pfa, which is defined as the probability that the receiver

decides a target is present when it is not. In case of large M
and according to Central Limit Theorem (CLT), the proba-

bility distribution of TED can be approximated by Gaussian

distribution. The expressions for probability of detection and

false alarm are calculated in [10, 12] as:

Pfa ≈ Q(
λ− σ2

b
√

2/Mσ2
b

) (3)

Pd ≈ Q(
λ− (σ2

b + σ2
x)

√

2/M(σ2
b + σ2

x)
) (4)

where Q(z) = 1√
(2π)

∫∞
z

e−
t
2

2 dt denotes tail probability of

the normal PDF. As we can see in equations (3) and (4), the

threshold λ depends on parameters such as variance, SNR,

number of the samples M , and required detection or false

alarm probability.

3. NOISE UNCERTAINTY MODELS

As mentioned above, the threshold λ used in energy detec-

tor depends on the noise variance, hence any errors in noise

variance, will lead to a significant performance degradations.

The lack of accurate knowledge of the noise variance is well

known as noise uncertainty problem.

3.1. Bounded uncertainty model

In their paper [13], Tandra and Sahai consider that the dis-

tribution function for noise can be summarized in a bounded

interval [(1 + ρ)−1σ2
b , (1 + ρ)σ2

b ], where σ2
b is the nominal

noise power and ρ is a parameter that quanties the level of the
uncertainty. We have already discussed and analyzed the case

without noise uncertainty. Now, if we consider the case with

uncertainty in the noise model, the new detection probability

Pd and false alarm probability Pfa are defined as:

Pfa ≈ argmax
σ̃2

b
∈[(1+ρ)−1σ2

b
,(1+ρ)σ2

b
]

Q(
λ− σ̃2

b
√

2/Mσ̃2
b

)

≈ Q(
λ− (1 + ρ)σ2

b
√

2/M(1 + ρ)σ2
b

) (5)

Pd ≈ argmin
σ̃2

b
∈[(1+ρ)−1σ2

b
,(1+ρ)σ2

b
]

Q(
λ− (σ̃2

b + σ2
x)

√

2/M(σ̃2
b + σ2

x)
)

≈ Q(
λ− ((1 + ρ)−1σ2

b + σ2
x)

√

2/M((1 + ρ)−1σ2
b + σ2

x)
) (6)

According to these formulas, the M-SNR relationship for

given Pfa and Pd is:

M = 2[βQ−1(Pfa)−(β−1+SNR)Q−1(Pd)]
2(SNR−(β2−1/β))2

(7)

where β = 1 + ρ. As the SNR approaches the SNRwall,

defined as β2−1
β , the number M of received signal samples

goes to infinity for a given (Pfa, Pd).

3.2. Unbounded uncertainty model

The Unbounded uncertainty model is firstly proposed by Son-

nenschein and Fishman in [9]. This model consider the case

of a log-normal approximated noise uncertainty and, after

some mathematical development, they reduce the analysis of

the noise uncertainty to a bounded distribution. However,

Jouin in [12] revisit this log-normal approximation model

and suggest to redene the uncertainty based on the estimated

noise distribution’s variance. The estimated noise level σ̃2
b is

assumed to follow log-normal distribution with expectation

E[σ̃2
b ] = σ2

b and variance V[σ̃
2
b ] = uσ4

b , where u the defined

uncertainty parameter. For large number of received samples

M , the statistic TED can be accurately approximated by a

Log-Normal distribution as following [12]:

TED ∼ logN(µ, ν)

{

ν = log(1 + 2
M )

µ = 2log(σTED
)− µ/2

where σTED
is the value of the power level of the collected

samples under hypothesis H0 or H1. Let’s now consider the

2
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statistics WED = TED/σ̃2
b which follow a normal distribu-

tion. Thus, we can define the false alarm probability Pfa and

the detection probability Pd as:

WED ≶H0

H1
log(λ) (8)

Pfa ≈ Q(
log(λ

√

1+2/M
1+u )

√

log(1 + 2/M)(1 + u)
) (9)

Pd ≈ Q(
log( λ

1+SNR

√

1+2/M
1+u )

√

log(1 + 2/M)(1 + u)
) (10)

So for a given probability of false alarm, we can determine

the energy detector threshold log(λ).

4. BOUNDED AND UNBOUNDED NOISE

UNCERTAINTY RELATIONSHIP

The principal idea is to find a match between the noise un-

certainty interval, [log((1 + ρ)−1σ2
b ), log((1 + ρ)σ2

b )], de-
fined by Tandra and Sahai and the confidence interval of

the normal distribution of the estimated noise level log(σ̃2
b )

defined as Ic = [log(
σ2

b√
1+u

) − α1

√
log(1+u)√

M
; log(

σ2

b√
1+u

) +

α2

√
log(1+u)√

M
]. Thus, we evaluate the correspondence be-

tween above two intervals and we get:

{
√

log(1 + u) = α2−α1√
M

α2 > α1

log(1 + ρ) = α2+α1

2
√
M

√

log(1 + u) ρ > 0

Therefore, the noise uncertainty parameter can be calculated

by fixing α1 and α2.

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR in dB

D
e

te
c
ti
o

n
 p

ro
b

a
b

ili
ty

Pfa = 0.01, u = rho = 0 and M=512

ideal Case

Normal approximation

Log−normal approximation

Fig. 1. Detection probability as function of the SNR for a

fixed false alarm (Pfa=0.01), ideal case of Energy Detector

(ρ = u = 0).

Figure 1 and figure 2 show the performance of energy

detection algorithm for a given probability of false alarm,

signal-to-noise ratio on X-axis and probability of detection
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Fig. 2. Detection probability as function of the SNR for a

fixed false alarm (Pfa=0.1) andM=512, Energy Detector un-

der bounded and unbounded noise uncertainty.

on Y-axis. Noise uncertainty makes the energy detector very

unreliable where good estimation of the noise power level is

not available. Thus, the probability of detection vanishes very

quickly when the SNR is becoming very small.

Now, starting from the confidence interval Ic, as defined
above, we can express the bounded noise uncertainty as σ̃2

b ∈
[

σ2

b√
1+u

e−α1

α2−α1

M ;
σ2

b√
1+u

eα2

α2−α1

M ]. Then Pd and Pfa can be

evaluated as:

Pfa ≈ Q(
λ− σ2

b√
1+u

eα2

α2−α1

M

√

2/M
σ2

b√
1+u

eα2

α2−α1

M

) (11)

Pd ≈ Q(
λ− (1 + SNR)

σ2

b√
1+u

e−α1

α2−α1

M

√

2/M(1 + SNR)
σ2

b√
1+u

e−α1

α2−α1

M

)(12)
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Fig. 3. Detection probability as function of the SNR for a

fixed false alarm (Pfa=0.1) andM=512.

Figure 3 proves that the Tandra model is a particular case
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of the unbounded noise uncertainty log-normal distribution

approximation.

5. CONCLUSION

In this paper, we have presented a study of the noise un-

certainty models used in energy detection based spectrum

sensing. By interpreting the two noise uncertainty bounded

and unbounded models proposed respectively by Tandra and

Jouini, we have proved that the bounded model is a specific

case of general unbounded model suggested by Sonnenschein

in [9] and Jouini in [12].
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