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ABSTRACT

This paper presents a game-theoretic approach to node activa-

tion control in parameter estimation via diffusion least mean

squares (LMS). The energy-aware activation control is a non-

cooperative repeated game where nodes autonomously decide

when to activate based on a utility function that captures the

trade-off between node’s contribution and energy expendi-

ture. The proposed two time-scale stochastic approximation

algorithm ensures the parameter estimates weakly converge

to the true parameter across the network, yet the global ac-

tivation behavior along the way tracks the set of correlated

equilibria of the underlying activation control game.

Index Terms— Adaptive networks distributed estima-

tion, game theory, stochastic approximation.

1. INTRODUCTION

This paper deals with a novel game-theoretic mechanism

whereby nodes learn how to activate diffusion least mean

squares (LMS). The diffusion LMS [2] aims for a group of

nodes to estimate/track an unknown common parameter by

taking noisy measurements and relying solely on in-network

processing. Due to limited communication capability, nodes

can exchange information only with neighbors. At successive

times, each node: (i) exchanges estimate with neighbors and

fuses the collected data; (ii) uses the fused data and local

measurements to refine its estimate via an LMS-type adaptive

filter. Thus, nodes’ estimates are functions of both tempo-

ral and spatial data, thereby, enabling the adaptive network

to respond in real-time to temporal and spatial evolution of

the data statistics [2]. Due to noise suppression through en-

semble averaging, such diffusion LMS schemes improve the

estimation performance, yet yield savings in computation,

communication and energy expenditure.

The intertwined role of adaptation and learning, crucial to

the self-configuration of networks, makes game-theoretic

learning an appealing framework, wherein sophisticated

This paper is a short version of [1], where the interested reader can find

details not discussed here.

global behavior can be achieved as the long-run outcome

of nodes locally groping for optimality. In this paper, we de-

vise an energy-aware diffusion LMS by equipping nodes with

a game-theoretic algorithm that prescribes nodes when to ac-

tivate. Due to interdependence of nodes’ activation, it is for-

mulated as a noncooperative repeated game. Associated with

the activation decision, there corresponds a reward/penalty

that captures the trade-off between the “potential value” of

the node contribution and its energy costs. A novel two

time-scale stochastic approximation algorithm is then pro-

posed that combines the diffusion LMS (slow timescale)

with a learning algorithm of regret-matching type [3] (fast

timescale) for activation control. The proposed energy-aware

diffusion LMS is scalable, robust to delays, and requires min-

imal message passing among nodes. Our results show that

the proposed algorithm is asymptotically consistent, yet the

global activation behavior along the way tracks the set of cor-

related equilibria [4] of the underlying game. There are only

few works (e.g., [5, 6]) that propose game-theoretic methods

for energy-efficient data acquisition. What differentiates this

work is that direct interaction of the energy saving scheme

with the parameter estimation algorithm is studied.

Correlated equilibrium is a generalization of Nash equi-

librium and describes a condition of competitive optimality.

It is, however, more preferable for online learning due to its

structural and computational simplicity, and coordination ca-

pability. This coordination can potentially lead to higher utili-

ties than if nodes make activation decisions independently (as

required by the Nash equilibrium).

2. GAME-THEORETIC ACTIVATION CONTROL

FOR DIFFUSION LMS

2.1. Parameter Estimation Problem

Consider a set of K nodes K = {1, . . . ,K} deployed to per-

form parameter estimation in the local regression model:

ykn = hknθ + vkn, k = 1, . . . ,K. (1)

EUSIPCO 2013 1569744709
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Here, θ is the M × 1 unknown parameter, {hkn} the sequence

of 1 ×M random vector of regressors locally accessible to

each node k, ykn the scalar local measurements and {vkn} the

sequence of zero-mean local measurement noise. The net-

work of nodes then seeks θ that solves

minθ E ‖Yn −Hc
nθ‖

2
. (2)

Here, Hc
n = col{h1n, . . . , h

K
n }, Yn =

[
y1n, . . . , y

K
n

]′
, where

(·)′ denotes the transpose operator. Further, E and ‖·‖ denote

the expectation and Euclidean norm operators, respectively.

The diffusion LMS [2] is a distributed algorithm that

adopts a peer-to-peer diffusion protocol to implement coop-

eration among individual nodes and ensures the sequence of

parameter estimates θkn across the network converge to (or

track) the parameter θ (θn) that solves (2).

2.2. Diffusion LMS

We start by spelling out the conditions imposed on the mea-

surement model (1):

(C1) There exists a symmetric and positive-definite matrix

Rk
h such that Rk

h , Ehkn
′
hkn, and

∥∥∥
∑∞

τ=n E
k
nh

k
τ

′
vkτ

∥∥∥ ≤ C,
∥∥∥
∑∞

τ=nE
k
nh

k
τ

′
hkτ −R

k
h

∥∥∥ ≤ C.

Here, Ek
n denotes the conditional expectation with respect to

{hkτ , y
k
τ , τ < n}. The above condition allows us to work with

correlated signals whose remote past and distant future are

asymptotically independent. With suitable regularity condi-

tions (such as uniform integrability), a large class of processes

{hn, vn} can be considered, e.g., Markovian or moving aver-

age processes.

Each node k can only communicate with neighbors deter-

mined by the connectivity graph G = (E ,V). Here, G is an

undirected graph, where V = K is the set of nodes and

(k, l) ∈ E if there exists a link between nodes k and l. (4)

The open and closed neighborhoods for each node k are then

defined by Nk = {l ∈ V ; (k, l) ∈ E} and N c
k = Nk ∪ {k},

respectively. Let further Sk = K\N c
k represent the set of

non-neighbors of node k.

Nodes exchange estimates over the graph at each period.

Each node k then fuses the local estimates {θln}l∈N c
k

by

means of a linear combiner:

φkn =
∑

l∈N c
k
wklθ

l
n. (5)

We pose the following condition on the weights wkl that con-

stitute a stochastic matrix W = [wkl].

(C2)
W = IK + µQ, 0 < µ≪ 1,

Q1K = 0, |qij | ≤ 1, ∀i, j, qij ≥ 0, for i 6= j.

Here, 1K = [1, . . . , 1]K×1. Note that W is dominated by

the diagonal elements representing the weights that nodes put

on their own estimate. This is essentially because smaller

step-sizes require smaller fusion weights to ensure fusion

and assimilation of measurements are performed at the same

timescale. The fused estimates are then fed back into the local

LMS-type adaptive filter. More precisely, each node runs:

θkn = φkn−1 + µhkn
′ [
ykn − h

k
nφ

k
n−1

]
,

φkn−1 =
∑

l∈N c
k
wklθ

l
n−1.

(6)

The estimate at each node is thus a function of both its tempo-

ral data as well as the spatial data across the neighbors. This

cooperation among nodes enables the adaptive network to re-

spond in real-time to the temporal and spatial variations in the

statistical profile of the data and leads to savings in commu-

nication and energy resources [2].

2.3. Activation Control Game

The objective is to combine the diffusion LMS with a game-

theoretic mechanism which enables the nodes to decide when

to activate. Nodes in the sleep mode do not take measure-

ments, nor do they fuse data from neighbors and update esti-

mates. Therefore, they save energy in both sensing and trans-

mitting their estimates to neighbors. The key feature that

characterizes our study as a game is the interdependence of

individual node’s behavior. The usefulness of a node’s infor-

mation, channel quality, required packet transmission energy

all depend on the activity of other nodes in the network.

The problem of each node k is to pick actions akn from

the set A = {0(sleep), 1(activate)} at successive times n =
1, 2, . . . to strategically optimize its utility. Denote by a =
(a1, . . . , aK) the joint action profile of all nodes, which can

be rearranged as a = (ak, a−k). Here, a−k denotes the joint

activation decision of all nodes excluding node k. Let further

θ = [θ1, . . . , θK ]′ denote the K-tuple of nodes’ estimates

each obtained locally via the diffusion LMS. The utility func-

tion captures the trade-off between energy expenditure and

the “value” of each node k’s contribution, and is comprised

of a local and a global term:

Uk
(
ak, a−k; θ

)
= Uk

loc

(
ak, aNk ; θ

)
+ Uk

glob

(
ak, aSk

)
. (7)

In (7), a−k is rearranged as a−k =
(
a
Nk , a−N c

k

)
, where aNk

and a
Sk denote the joint action profile of neighbors Nk and

non-neighbors Sk, respectively. The utility for each node k
further depends on the vector of parameter estimates θ.

The local utility function Uk
loc(·) captures the trade-off

between the value of the measurements collected by node k
and the energy costs associated to it. If too many of node

k’s neighbors activate simultaneously, excessive energy is

consumed due to the spatial-temporal correlation of mea-

surements. Additionally, the probability of successful trans-

mission reduces due to channel congestion. On the other

hand, if too few of node k’s neighbors activate, their fused

estimates lack “innovation.” The local utility of node k is

2
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then given by: [see (8) at the bottom of the page], where

ηk(ak, aNk) = ak +
∑

l∈Nk
al. In (8), Kl,1 and γl are

the pricing parameters related to the ‘reward’ associated with

data collected by node k; Kl,2 is the pricing parameter related

to the energy costs associated to activation EAct and broad-

casting measurements ETx (·); see [6, p. 6099] for the above

details of the Chipcon CC2420 transceiver chipset that im-

plements the CSMA/CA scheme and is used in the numerical

example in Sec. 5. Higher activity ηk of nodes neighboring

node k lowers its local utility due to: (i) reducing success

of transmission attempts, and (ii) inefficient usage of energy

resources (due to spatial-temporal correlation).

The global utility function Uk
glob(·) concerns the con-

nectivity of the network and diffusion of estimates in a

geographic region. Let Rk
r denote the set of nodes within

radius r from node k excluding the neighborhood N c
k . De-

fine the number of active nodes in Rk
r by ζk

(
ak, aSk

)
=

ak +
∑

l∈Rk
r
al. The global utility of node k is defined as:

Uk
glob

(
ak, aSk

)
=

{
0, ak = 0 (sleep),

Kg

(
e−γgζ

k)
, ak = 1 (activate).

(9)

In (9), Kg and γg are the pricing parameters. Higher ζk low-

ers the global utility due to: (i) smaller role of node k in

diffusion of estimates and keeping connectivity in Rk
r , and

(ii) reducing the success of transmission for other nodes in

the neighborhood which affects global diffusion of estimates;

see [1] for more details.

Each node k realizes ηkn = ηk(ak, aNk
n ) as a consequence

of receiving neighbors’ estimates {θln}l∈Nk
, therefore, is

able to evaluate its local utility. Nodes, however, do not

observe non-neighbors’ actions, therefore, do not realize

ζkn = ζk(akn, a
Sk
n ) and are unable to evaluate global util-

ities. To this end, some sort of centralization is required

by implementing cluster heads that monitor the activity of

nodes in their locale and deliver global utilities to the nodes.

Hereafter, Uk
glob,n(a

k
n) = Uk

glob

(
akn, a

Sk
n

)
denotes the realized

global utility for node k at period n by choosing action akn.

The activation control problem is then formulated as a

noncooperative repeated game with neighborhood structure:

G =
(
K,

(
Ak

)
k∈K

,G,
(
Uk

)
k∈K

, θ
)
, (10)

where the set of actions Ak = A = {0 (sleep), 1 (activate)}
for all nodes k ∈ K. The set of correlated ǫ-equilibrium Cǫ(θ)
for the game G is defined as follows:

Definition 2.1. Let π denote a joint distribution on the joint

action space AK = ×k∈KAk, i.e., π (a) ≥ 0, ∀a ∈ AK and∑
a∈AK π (a) = 1. The set of correlated equilibria Cǫ(θ) is

the polytope: [see (11), shown at the bottom the page], where

πk(i, a−k) denotes the probability that node k picks action i
and the rest a−k .

Note that Cǫ(θ) is a function of θ—it slowly evolves as the

local parameter estimates θn change over time. Correlated

equilibrium allows nodes to coordinate their activation while

retaining their autonomy. This coordination leads to poten-

tially higher utilities than if they take actions independently

(as required by Nash equilibrium) [4]. It is further natural due

to the correlation among nodes’ activation decisions.

3. ENERGY-AWARE DIFFUSION LMS

In light of the above game-theoretic model, we proceed here

to present the energy-aware diffusion LMS algorithm. The

node activation mechanism can be described as follows: Each

node k generates and updates two regret matrices: (i) αk
2×2,

that records average local-regrets, and (ii) βk
2×2, which is an

unbiased estimate of the average global-regrets. (The inter-

ested reader is referred to [1] for related details.) Positive

overall-regrets αk
n(i, j) + βk

n(i, j) imply the opportunity to

achieve higher utilities by switching from action i to j in fu-

ture. Define |x|+ = max{0, x}. Nodes activate according

to a randomized policy ψ
k
n, determined as follows: At each

period, with probability 1− δ, node k chooses its action with

probabilities proportional to
∣∣αk

n+β
k
n

∣∣+. With the remaining

probability δ, it uniformly randomizes among its action setA.

This can be interpreted as “exploration”.

Algorithm 1:

Step 0) Initialization: Set the exploration factor 0 < δ < 1
and ξk > 2|Uk

max − U
k
min|, where Uk

max and Uk
min denote the

upper and lower bounds on node k’s utility function. Choose

the adaptation rates 0 < µ, ρ ≪ 1 such that µ = O(ρ2).
Initialize θk0 = φk0 = 0, ψk

0 = [ 12 ,
1
2 ]

T , αk
0 = βk

0 = 02×2.

For n = 1, 2, . . ., repeat:

Step 1) Node Activation: Select action akn according to the

distribution ψk
n: [see (12) at the bottom of the page], where

akn−1 denotes the action picked in the last period.

Step 2) Diffusion LMS:

θkn =

{
θkn−1, akn = 0,

φkn−1 + µhkn
′ [
ykn − h

k
nφ

k
n−1

]
, akn = 1.

(13)

Uk
loc

(
ak, aNk ; θ

)
=

{
0, ak = 0 (sleep)

Kl,1

(
1− e−γl‖θ

k−φk‖2s(ηk)
)
−Kl,2

(
ETx

(
ηk

)
+ EAct

)
, ak = 1 (activate)

(8)

Cǫ
(
θ
)
=

{
πc

θ
:
∑

a
−k

πc,k
θ

(
i, a−k

) [
Uk

(
j, a−k; θ

)
− Uk

(
i, a−k; θ

)]
≤ ǫ, ∀i, j ∈ A, ∀k ∈ K

}
(11)

ψk
n(i) =

{
(1− δ)min

{
1
ξk

∣∣αk
n−1

(
akn−1, i

)
+ βk

n−1

(
akn−1, i

)∣∣+ , 12
}
+ δ

2 , i 6= akn−1

1−
∑

j∈A\{i} ψ
k
n (i) , i = akn−1

(12)

3
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Step 3) Estimate Exchange: If akn = 1: (i) Transmit θkn to

neighborsNk and collect {θln}l∈Nk
; (ii) Form neighbors’ ac-

tion profile aNk
n = (aln)l∈Nk

and
{
θ̂ln

}
l∈Nk

such that

θ̂ln =

{
received estimate, if akn = 1 (sleep),
θln−1, if akn = 0 (active).

(14)

If akn = 0, go to Step 3.

Step 4) Data Fusion:

φkn =
∑

l∈N c
k
wklθ̂

l
n. (15)

Step 5) Regret Update: For all i, j ∈ A:

5.1: Local-Regret Update [see (16) at the bottom of the page],

where I{·} denote the indicator function.

5.2: Global-Regret Update [see (17)at the bottom of the page].

Step 6) Recursion: Set n← n+ 1 and go to Step 1.

The above algorithm is simply a non-linear adaptive fil-

ter (16)–(17) run in the fast timescale (step-size ρ), which

governs node activation, coupled with the diffusion LMS (13)

run in the slow timescale (step-size µ = O(ρ2)), which car-

ries out the parameter estimation task. Step 1) simply updates

the activation strategy of nodes based on the regret updates

(Step 5) in the last period. The exploration factor δ in (12)

forces all nodes to activate with a minimum frequency and is

essential as nodes continuously learn their global utility func-

tions. As will be discussed later, larger δ will lead to conver-

gence of the nodes’ global activation behavior to a larger ǫ-
distance of the correlated equilibria set. Taking the minimum

with 1/2 and ξk also ensures thatψk
n forms a valid probability

distribution. Step 2) shows that nodes run the diffusion LMS

and update their estimates only when they choose to activate.

Step 3) describes the exchange of information with neighbors.

Remark 3.1. The computational burden of the activation

mechanism is O(1) and does not grow with the number of

nodes K , nor with the dimension of the parameter estimation

problem M . It is negligible as compared to the diffusion

LMS, which requires O(M) calculations per iteration.

4. GLOBAL NETWORK PERFORMANCE

4.1. Global Behavior

The emergent global behavior of the network can be captured

by two inter-connected discrete-time processes:

Define

B =W ⊗ IM , B̂ = Q⊗ IM , S , µIKM ,

Vn = [v1n, . . . , v
K
n ]′, Yn =

[
y1n, . . . , y

K
n

]′
,

Mn =
[
diag{a1nIM , . . . , a

K
n IM}

]
,

Hn =
[
diag{h1n, . . . , h

K
n }

]
,

(18)

where⊗ denotes the Kronecker product. The global diffusion

LMS update associated with Algorithm 1 can be expressed in

the compact state-space form as

θn = θn−1+SMn

[
B̂θn−1+H

′
n

(
Yn−HnBθn−1

)]
. (19)

The collective activation behavior of nodes, zn, is defined

as the discounted empirical frequency of joint activation de-

cisions of all nodes up to period n. Formally,

zn = ρ
∑

τ≤n (1− ρ)
n−τ

eaτ
, (20)

where eaτ
denotes the unit vector in the space of Cartesian

product ×k∈KA with the element corresponding to aτ being

equal to one. In (20), ρ serves as a forgetting factor to foster

adaptivity to the evolution of the local parameter estimates.

4.2. Main Result: From Individual to Global Behavior

We now characterize the global behavior emerging by each

node individually following Algorithm 1. Let θ̃ = θ − θ.

Define the piecewise constant continuous-time interpolation

processes θ̃
µ
(·) and zρ(·) associated to Algorithm 1:

θ̃
µ
(·) = θ̃n, for t ∈ [nµ, (n+ 1)µ) ,

zρ(·) = zn, for t ∈ [nρ, (n+ 1) ρ) .
(21)

Before proceeding with the theorem, let us recall that

weak convergence is a generalization of convergence in dis-

tribution to a function space.

Theorem 4.1. Suppose every node follows Algorithm 1.

Then, for each ǫ > 0, there exists δ̂(ǫ) such that if δ < δ̂(ǫ) in

Algorithm 1 (Step 1) and µ = O(ρ2),
1) As ρ→ 0, zρ(·) converges weakly to Cǫ(θ(·)).

2) Under (C1)–(C2), θ̃
µ
(·) converges weakly, as µ → 0, to

θ̃(·) that is a solution to

dθ̃(t)
dt
∈
{
Mπθ(t)

(

B̂ −Rd
h

)

θ̃(t);πθ(t) ∈ Cǫ(θ(t))
}

, (22)

whereMπθ
= diag{m1

πθ
IM , . . . ,m

K
πθ
IM}, IKM > Mπθ

>

κ · IKM for some κ > 0, B̂ is defined in (18), and Rd
h =

diag{R1
h, . . . , R

K
h }.

3) System (22) is globally asymptotically stable and

limt→∞

∥∥θ̃(t)
∥∥ = 0. (23)

Proof. See [1] for detailed proof.

αk
n(i, j) = αk

n−1(i, j) + ρ
[(
Uk

loc

(
j, aNk

n ; θn
)
− Uk

loc

(
akn, a

Nk
n ; θn

))
I{ak

n=i} − α
k
n−1(i, j)

]
(16)

βk
n(i, j) = βk

n−1(i, j) + ρ

[[
ψk
n(i)

ψk
n(j)

Uk
glob,n

(
akn

)
I{ak

n=j} − U
k
glob,n

(
akn

)
I{ak

n=i}

]
− βk

n−1(i, j)

]
(17)

4
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Part 1) in Theorem 4.1 concerns the game-theoretic acti-

vation mechanism. It asserts that if all nodes individually fol-

low the proposed mechanism, the global activation behavior

tracks the time-varying polytope Cǫ(θn) of the underlying ac-

tivation control game as the vector of local estimates θn is re-

fined over time. Hence, coordination is reached among nodes

for activation. Part 2) gives the limit system representing the

behavior of the energy-aware diffusion LMS as µ → 0. (A

differential inclusion is of the form dx/dt ∈ F(x), where

F(x) specifies a family of trajectories rather than a single tra-

jectory as in the ODE dx/dt = F (x).) It simply states that

dynamics of the diffusion LMS along the way is based on the

global activation behavior drawn from the set of correlated

equilibrium. Part 3) finally concludes asymptotic consistency

of the energy-aware diffusion LMS.

5. NUMERICAL EXAMPLE

We consider the network topology depicted in Fig. 1 and de-

fine Q = [qkl] in (6) as

qkl =

{ 1
|N c

k
| , l ∈ N c

k ,

0, otherwise.
(24)

Fig. 1 illustrates the statistics of node’s regressors, generated

by a Gauss-Markov source with local correlation function

r(τ) = σ2
h,kν

|τ |
h,k, where νh,k is the correlation index. We as-

sume nodes are equipped with Chipcon CC2420 transceiver

chipset which implements CSMA/CA protocol for exchang-

ing estimates with neighbors. The reader is referred to [6,

Appendix] for detailed model description and expressions

for ETx(·) (kc = km = 1) and EAct in (8). We further set

ρ = 5e-2, µ = 5e-3, Kl,1 = Kg = 1, and assume vkn is i.i.d.,

Gaussian with zero mean and variance σ2
v,k = 10−3.

Define the network excess mean square error EMSEnet
,

1
K

∑K
k=1 EMSEk, where EMSEk = E|hkn(θ − φkn−1)|

2.

Fig. 2 demonstrates the trade-off between energy expenditure

in the network and the rate of convergence of the diffusion

LMS algorithm in terms of EMSEnet after 1000 iterations.

Nodes become more conservative by increasing the energy

consumption parameter Kl,2 and, accordingly, activate less

frequently due to receiving lower utilities; see (8). This re-

duces the average proportion of active nodes and increases

EMSEnet due to recording fewer measurements and less fre-

quent fusion of neighboring estimates. Increasing the pricing

parameters γl, in (8), and γg, in (9), has the same effect as

can be observed in Fig. 2.

6. CONCLUSION

We considered energy-aware parameter estimation via dif-

fusion LMS by equipping each node with a game-theoretic

learning algorithm that updates its activation strategy and

adapts it to the changes in the network. The convergence
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Fig. 1. Network topology and nodes’ regressors statistics.
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Fig. 2. Trade-off between energy expenditure and estimation

accuracy after 1000 iterations.

analysis revealed that the proposed energy-aware diffusion

LMS is asymptotically consistent, yet the global activation

behavior tracks the set of approximate correlated equilibria

of the underlying activation control game.
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