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ABSTRACT

In this paper, we consider a single-carrier communication

scheme, where two transceivers exchange information with

the help of multiple relays. The propagation delay in each re-

laying path is assumed to be different from those of the other

paths. As such, the end-to-end channel is frequency selective,

and hence, it produces inter-symbol-interference (ISI) at the

two transceivers. The simple amplify-and-forward scheme

is used at the relays and channel equalization is employed

at both transceivers to combat ISI. We minimize the mean

square error (MSE) of the total estimated received signals at

the both transceivers, subject to a total power budget con-

straint, by optimizing the channel equalizers, the relay beam-

forming weights, and the transceivers’ powers. We show

that our proposed approach leads to a relay selection method

which transforms the end-to-end channel into a frequency flat

channel. We also present a semi-closed-form solution for the

optimal relay beamforming weight.

Index Terms— Two-way relay network, single-carrier

equalization, distributed beamforming

1. INTRODUCTION

In a wireless two-way relay network, two transceivers com-

municate with each other with the help of one or more in-

termediate relays. There are different relaying approaches

among which, because of its simplicity, amplify-and-forward

technique is of particular interest and has been widely stud-

ied in the literature [1–4]. In almost all these publications,

the authors consider perfectly time-synchronized relays and

transceivers. However, since the propagation delay of each

relaying path can be different from that of the other paths,

the signals transmitted by the relays arrive at the transceivers

at different times, thereby leading to the frequency selectiv-

ity of the end-to-end channel. Therefore, even if the relay-

transceiver channels are frequency flat, ISI is inevitable at the

transceivers.

There are two different approaches to combat such an ISI.

The first approach is based on multi-carrier communication,

where all the nodes of the network are equipped with orthog-

onal frequency division multiplexing (OFDM) transmission

and reception to transform the end-to-end frequency selective

channel into multiple parallel flat fading channels [5, 6]. In

the second approach, which is a single-carrier scheme, block

or symbol channel equalization is used at the nodes of the

network to eliminate ISI [7–10].

In this work, we consider a single-carrier scheme in an

asynchronous two-way relay network and develop our system

model for such a scheme. The relays are assumed to simply

amplify their received signals, while the burden of equaliza-

tion is on the shoulders of two block channel equalizers im-

plemented at the two transceivers. We optimally obtain the

transceivers’ powers and the relay beamforming weight vec-

tor as well as the block equalizers in order to minimize the to-

tal MSE of the estimated received signals at both transceivers.

We prove that such an optimization problem leads to a relay

selection scheme, where only the relays contributing to one

tap of the end-to-end channel are turned on and the remaining

relays have to be turned off. Moreover, we present a semi-

closed-form solution to find the optimum relay weights for

such a relay selection method.

Notations: The statistical expectation is represented as

E{·} and tr(·) denotes the trace of a matrix. Complex conju-

gate, transpose, and Hermitian transpose are denoted as (·)∗,

(·)T , and (·)H , respectively. We represent theN ×N identity

matrix and the M ×N all-zero matrix as IN and 0M×N , re-

spectively. We let diag(a) stand for a diagonal matrix whose

diagonal entries are the elements of the vector a.

2. SIGNAL MODEL

We consider a two-way relay network which includes two

single-antenna transceivers which communicate with each

other with the help of L single-antenna relay nodes. For

the sake of simplicity, the relays are assumed to simply

amplify and forward their received signals. We use block

transmission to send a vector of Ns × 1 symbols. As it

is shown in Fig. 1, the transmitted symbols go through the

serial-to-parallel block represented as “S/P”. The ith trans-

mitted block from Transceiver p is represented as sp(i) =[
sp[iNs] · · · sp[iNs +Ns − 1]

]T
, for p ∈ {1, 2}.

Due to the frequency selectivity of the channel, inter-block-

interference (IBI) arises between successive transmitted

blocks which renders the received signal dependent on both
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sp(i) and sp(i− 1). In order to mitigate the IBI (thereby pre-

venting the consecutive blocks from overlapping with each

other), a cyclic prefix insertion matrix, represented as Tcp,

is pre-multiplied by sp(i) to transmit the data in blocks with

the size Nt = N + Ns. Hence, the ith transmitted block is

defined as

sp(i) , Tcpsp(i) =
[
sp[(i + 1)Ns −N ] · · ·

sp[(i + 1)Ns − 1] sp[iNs] · · · sp[(i+ 1)Ns − 1]
]T
.

Here, N is the length of the vector of the equivalent discrete-

time end-to-end channel taps and Tcp = [ITcp ITNs
]T is an

Nt × Ns matrix which is the concatenation of the last N
rows of the identity matrix INs

(denoted as Icp), and the

identity matrix INs
. Then, using the parallel-to-serial block

denoted as “P/S”, the serial signal goes through the chan-

nel. After the self-interference-cancelation block, denoted as

“SIC”, the firstN entries of the received block are simply dis-

carded by pre-multiplying it with the cyclic removal matrix

Rcp , [0Ns×N INs
]. The burden of channel equalization

is on the shoulders of the block equalizers, which are imple-

mented at Transceivers 1 and 2 and are denoted as Fr1 and

Fr2, respectively.

Assuming reciprocal and frequency flat channels be-

tween each transceiver and each relay, the 2 × 2 matrix

H[n] =

[
h11[n] h12[n]
h21[n] h22[n]

]
represents the end-to-end chan-

nel between the two transceivers. Note that for p ∈ {1, 2},

hpp[n] represents the linear time-invariant (LTI) channel cor-

responding to the so-called self-interference signal, which

is transmitted by Transceiver p and is relayed back to the

same transceiver. Let Ts be the sampling time and τlpq be

the propagation delay of the signal path from Transceiver

p to Transceiver q which is going through the lth relay, for

p, q ∈ {1, 2}. Therefore, the impulse response of the end-

to-end channel from Transceiver p to Transceiver q, can be

written as

hpq[n] =

L∑

l=1

blpqδ[n− n̆l] for p, q ∈ {1, 2} (1)

where n̆l is an integer number satisfying (n̆l − 1)Ts ≤
τlpq ≤ n̆lTs, whereas blpq , wlglpglq is the total ampli-

fication factor applied to the signal going through the lth
relay, wl is the complex weight of the lth relay, and glp is

the flat fading channel coefficient between Transceiver p
and the lth relay, for p, q ∈ {1, 2}. The vector of chan-

nel impulse response coefficients can be represented as

hpq =
[
hpq[0] hpq[1] · · · hpq[N − 1]

]T
. The contri-

bution of different relays to different taps of hpq[·] is shown

by N × L matrix Bpq , whose (n, l)th element is defined as

Bpq(n, l) ,

{
glpglq, (n− 1)Ts ≤ τlpq ≤ nTs
0, otherwise.

(2)

Denoting the vector of complex relay weights as w ,

[w1, . . . , wL]
T , the vector of channel impulse response coef-

ficients can be represented as

hpq = Bpqw. (3)

The reciprocity of the end-to-end channel implies that h12 =

h21 , h ,
[
h[0] h[1] · · · h[N − 1]

]T
. We as-

sume that the propagation delay between the lth relay and

Transceiver q, denoted as τ ′lq , satisfies (n′
l − 1)Ts ≤ τ ′lq ≤

n′
lTs. Let υl[n] represent the temporally and spatially zero-

mean white Gaussian noise at the lth relay with variance of

σ2. This noise is multiplied by wl, is delayed by n′
lq , and ar-

rives at the block equalizers. Hence, the relay noise received

at Transceiver q can be written as

ξq[n] =

L∑

l=1

wlglqυl[n− n′
lq] = υT

n,qGqw (4)

where υn,q ,
[
υ1[n− n′

1q] · · · υL[n− n′
Lq]

]T
and

Gq = diag{glq, g2q, · · · , gLq} , for q ∈ {1, 2}. Considering

γ′q[n] as the vector of noise added to the signal at Transceiver

q and before the serial-to-parallel block, the total noise vec-

tor received at Transceiver q and before the cyclic removal

matrix can be written as

γq(i) = ξq(i) + γ ′(i) = Υq(i)Gqw+ γ ′
q(i) (5)

where γq(i) ,
[
γq[iNt] · · · γq[iNt +Nt − 1]

]T
,

ξq(i) ,
[
ξq[iNt] · · · ξq[iNt +Nt − 1]

]T
, γ

′

q(i) ,
[
γ

′

q[iNt] · · · γ
′

q[iNt +Nt − 1]
]T

, and

Υq(i) ,
[
υiNt,q υiNt+1,q · · · υ(iNt+Nt−1),q

]T

is an Nt × L matrix. Assuming E{|sp[k]|2} = 1 for p ∈
{1, 2}, we can write the ith transmitted block received at the

output of self-interference-cancelation block at Transceiver q
as

rq(i) =
√
PpH0sp(i) +

√
PpH1sp(i− 1) + γq(i) (6)

where Pp is the transmit power of Transceiver p, and the fol-

lowing definitions are used:

H0 ,




h[0] 0 0 · · · 0
... h[0] 0 · · · 0

h[N − 1] · · · . . . · · ·
...

...
. . . · · · . . . 0

0 · · · h[N − 1] · · · h[0]




(7)

H1 ,




0 · · · h[N − 1] · · · h[1]
...

. . . 0
. . .

...

0 · · · . . . · · · h[N − 1]
...

...
...

. . .
...

0 · · · 0 · · · 0




. (8)
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Fig. 1. System model

After removing the cyclic prefix and discarding the firstN en-

tries from the received block, the received block can be writ-

ten as

rq(i) = Rcprq(i) =
√
PpH̃sp(i) + γ̃q(i) (9)

where γ̃q(i) , Rcpγq(i) and H̃ , RcpH0Tcp is an Ns ×
Ns circulant matrix with its (k, l)th entry given by h̃[(k −
l) mod Ns], where h̃[·] is obtained by zero padding h[·]
with (Ns−N) zeros. It can be verified that RcpH1 = 0, and

therefore, the IBI-inducing matrix H1 is eliminated. Hence,

the estimated transmitted signal block at Transceiver q can be

represented as

ŝp(i) , Frqrq(i) =
√
PpFrqH̃sp(i) + Frqγ̃q(i) (10)

where ŝp(i) is an Ns × 1 vector. Considering υl(i) as the

noise added to the ith signal block at the lth relay, the total

relayed signal at the lth relay can be represented as

x̄l(i) = wl

[√
P1gl1s̄1(i) +

√
P2gl2s̄2(i) + υl(i)

]
(11)

where xl(i) ,
[
xl[iNt] · · · xl[iNt +Nt − 1]

]T
, while

xl[t] is the signal transmitted by the lth relay at time t, and

υl(i) ,
[
υl[iNt] · · · υl[iNt +Nt − 1]

]T
is the ith

block of measurement noise of the lth relay. The average

transmit power of the lth, P̃l = 1
Ns

E
{
xH
l (i)xl(i)

}
relay is

calculated as1

P̃l = |wl|2
(
|gl1|2P1 + |gl2|2P2 + σ2

)
(12)

and Ptotal = P1+P2+
∑L

l=1 P̃l is the total consumed power.

3. PROPOSED DESIGN APPROACH

In this section, we aim to optimally obtain the block channel

equalizers at both transceivers as well as the relay weight vec-

tor and the transceivers’ powers in order to minimize the sum-

MSE of the estimated received signals at both transceiver.

The vector of signal estimation error at Transceiver q can be

1Here, we assume that the transmission length is much longer than the

difference between the times of arrivals of the transceiver’s signals at the

relay.

written as eq(i) = ŝp(i)− sp(i) = Frqrq(i)− sp(i). We now

formulate our design problem as

min
P1≥0

P2≥0

min
w

min
Fr1,Fr2

2∑

q=1

E
{
‖eq(i)‖2

}
s.t. Ptotal ≤ Pmax

(13)

where Pmax is the total available power in the network. As-

suming that E{sp(i)} = 0 and that sp(i) and γ̃q(i) are statis-

tically independent, we can write

E
{
eHq (i)eq(i)

}
= tr

(
FrqRqF

H
rq

)

−
√
Pp tr

(
FrqH̃+ H̃HFH

rq

)
+Ns (14)

where

Rq , E
{
rq(i)r

H
q (i)

}
= PpH̃E

{
sp(i)s

H
p (i)

}
H̃H+

E
{
γ̃q(i)γ̃

H
q (i)

}
= PpH̃H̃H + σ2

(
||Gqw||2 + 1

)
INs

is the correlation matrix of the received block. The opti-

mal value of Fr1 can be obtained by taking the derivative of

(14) with respect to Fr1 and equating it to zero. This yields

F
opt
r1 =

√
P2H̃

HR−1
1 . Similarly, we can obtain F

opt
r2 =√

P1H̃
HR−1

2 and write

λ(w, P1, P2) , min
Fr1,Fr2

2∑

q=1

E
{
eHq (i)eq(i)

}

= 2Ns − tr
(
H̃H(P2R

−1
1 + P1R

−1
2 )H̃

)
. (15)

The Ns ×Ns circulant matrix H̃ can be diagonalized by pre-

and post-multiplying it with Ns-point DFT and IDFT matri-

ces as represented below

FH̃F−1 = DH , diag{H(ej0), · · · , H(ej
2π(Ns−1)

Ns )} (16)

where H(ej2πf ) =
N−1∑

n=0

h[n]exp(−j2πfn) is the frequency

response of the LTI channel at the normalized frequency f ,

and the elements of the DFT matrix are defined as F (k, n) =

N
− 1

2
s exp(−j2πkn/Ns). Using (16), we deduce that H̃ =

3
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F−1DHF, and hence, rewrite (15) as

λ(w,P1, P2) = 2Ns

− P2tr
[
(P2I+ σ2

(
‖G1w‖2 + 1

)
D−2

H )−1
]

− P1tr
[
(P1I+ σ2

(
‖G2w‖2 + 1

)
D−2

H )−1
]
. (17)

Let fk , 1√
Ns

[
1 ej

2π(k−1)
Ns · · · ej

2(N−1)(k−1)π
Ns

]T
,

we can write DH = diag{
√
Nsf

H
1 Bw, · · · ,

√
Nsf

H
Ns

Bw}.

Therefore, λ(w, P1, P2) can be written as

λ(w, P1, P2) =

2∑

q=1

Ns−

Pp tr



(

diag{Pp +
σ2
(
‖Gqw‖2 + 1

)

Ns|fHk Bw|2 }k=Ns

k=1

)−1

 . (18)

Using (18) and the fact that the trace of a diagonal matrix can

be written as the sum of its diagonal entries, we can rewrite

(13) as

min
P1≥0

P2≥0

min
w

2∑

q=1

Ns∑

k=1

1

φk,q(w)
s.t. Ptotal ≤ Pmax (19)

where φk,q(w) = 1 +
PpNs|fHk Bw|2
σ2(‖Gqw‖2+1) . In [11], it has been

shown that optimization problem (19) can be written as

min
P1≥0

P2≥0

min
w

2∑

q=1

Ns

Ppw
HBHBw

σ2(‖Gqw‖2+1) + 1

subject to

L∑

l=1

|wl|2
(
|gl1|2P1 + |gl2|2P2 + σ2

)

+ P1 + P2 ≤ Pmax and w ∈ Un. (20)

where Un is the set of relay weight vectors such that only the

nth tap of the channel is non-zero and the remaining taps are

zero [6]. Indeed, the constraint w ∈ Un, implies that only re-

lays which contribute to the nth tap of the end-to-end channel

are turned on and the remaining of the relays have to turned

off. Let wn represent any vector of relay weights correspond-

ing to the nth tap of the channel. Hence, if w ∈ Un then,

wHBHBw = wH
n bnb

H
n wn, where bH

n captures the non-

zero entries of the (n + 1)th row of B. In order to minimize

the error, we need to find the index of the tap which yields

the minimum value for the objective function. Therefore, the

optimization problem (20) can be written as

min
0≤n≤N−1

min
P1≥0

P2≥0

min
wn

2∑

q=1

Ns

ψn,q(w)
for p 6= q

subject to P1 + P2 + P1‖G(n)
1 wn‖2 + P2‖G(n)

2 wn‖2

+ σ2wH
n wn ≤ Pmax (21)

where ψn,q(w) ,

(
Ppw

H
n bnb

H
n wn

σ2
(

‖G(n)
q wn‖2+1

) + 1

)
and G

(n)
q , for

q ∈ {1, 2}, is a diagonal matrix whose diagonal entries are

a subset of those diagonal entries of Gq which correspond

to the relays that contribute to the nth tap of the end-to-end

channel impulse response. Without loss of optimality, we can

assume that ψn,1(w) = ψn,2(w). Otherwise, if for example,

ψn,1(w) > ψn,2(w) we can reduce the optimal value of P2

to make ψn,1(w) and ψn,2(w) equal, thereby contradicting

optimality. Therefore, the optimization problem (21) can be

written as

min
0≤n≤N−1

min
P1≥0

P2≥0

min
wn

2Ns

P2w
H
n bnb

H
n wn

σ2
(

‖G(n)
1 wn‖2+1

) + 1

subject to P1

(
1 + ‖G(n)

1 wn‖2
)
+ P2

(
1 + ‖G(n)

2 wn‖2
)

+ σ2wH
n wn ≤ Pmax

P1

(
‖G(n)

1 wn‖2 + 1
)
= P2

(
‖G(n)

2 wn‖2 + 1
)
. (22)

In [11], it is shown that the constrained optimization problem

(22) can be written as

max
0≤n≤N−1

max
wn

(Pmax − σ2wH
n wn)w

H
n bnb

H
n wn

2σ2
(
‖G(n)

1 wn‖2 + 1
)(

‖G(n)
2 wn‖2 + 1

)

subject to wH
n wn ≤ Pmax

σ2
. (23)

In [12], a semi-closed-form solution to (23) is given as

wo
n(µn) = σ2κ(µn)

√
2νn

(
2µnQ

(n)
1 +2νnQ

(n)
2 +σ2I

)−1

bn

(24)

where Q
(n)
q = G

(n)H
q G

(n)
q , νn , 0.5Pmax/σ

2 − µn, and

κ(µn) is defined as

κ(µn) ,σ
−1(bH

n (σ2I+ 2µnQ
(n)
1 )

× (σ2I+ 2µnQ
(n)
1 + 2νnQ

(n)
2 )−2bn)

− 1
2 (25)

and µn is the unique solution to the following equation:

σ2(Pmax/σ
2 − 4µn)b

H
n

× (2µnQ
(n)
1 + (Pmax/σ

2 − 2µn)Q
(n)
2 + I)−1bn−

µn(Pmax/σ
2 − 2µn)b

H
n

× (2µnQ
(n)
1 + (Pmax/σ

2 − 2µn)Q
(n)
2 + I)−2

× (2Q
(n)
1 − 2Q

(n)
2 )bn = 0 (26)

which satisfies 0 ≤ µn ≤ 0.5Pmax/σ
2. A simple bisection

method can be used to solve (26) and to find the value of

µn in the interval [0 0.5Pmax/σ
2]. The optimal value of

n is determined by evaluating the objective function for wn

for n = 0, 1, · · · , N − 1 and choosing the value of n which

leads to the maximum objective function. In other words, the

4
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Fig. 2. Bit error rate versus total transmit power

set of relays which contribute to one tap of the finite impulse

response channel with the smallest total MSE, is selected and

the remaining relays have to be turned off. In [2], it is shown

that the solution to (24) requires all participating relays to use

half of the total available transmit power.

4. SIMULATION RESULTS

We consider an asynchronous bi-directional relay network

with L = 8 single-antenna relays. The transceivers are as-

sumed to transmit signal blocks of Ns = 64 symbols with

a cyclic prefix length of N = 16. The zero-mean Gaussian

white noise has a variance σ2 = 1. The flat fading channel

coefficients are zero-mean independent and identically dis-

tributed (i.i.d) complex Gaussian random variables with unit

variance. For sampling time Ts = 1, we model the prop-

agation delay of each relay path as a uniformly distributed

random variable uniformly distributed in the interval [0, 8Ts].
Assuming QPSK modulation, in Fig. 2 we show the end-

to-end BER curves versus the total transmit power Pmax

for our proposed algorithm and compare it with the one for

equal power allocation (EPA) method where the total transmit

power is equally allocated to the all nodes of the network. As

it is illustrated in this figure, our proposed approach yields a

better performance in comparison with the EPA scheme. That

is for a given total transmit power, our proposed algorithm

yields less error compared to the EPA method. Moreover,

for transmit powers higher than 10 dB, in our proposed algo-

rithm, the bit error rate decreases drastically.

5. CONCLUSION

In this paper, we considered two transceivers which aim to

communicate using an amplify-and-forward relay network

with different propagation delays in different relaying paths.

Since the end-to-end channel is frequency selective, we used

cyclic insertion and removal matrices at the transceivers to

combat IBI. The channel equalizers, the relay beamformer

weights and the transceivers’ powers were optimized to mini-

mize the MSE of the total estimated transmitted signals under

a total power budget constraint. We proved that at the op-

timum, single-carrier equalization leads to a relay selection

scheme and presented a semi-closed-form solution for the

optimal beamformer.
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