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ABSTRACT

In this work, we have investigated the heart sound (HS) de-
tection performance of Hidden Markov Model (HMM) in
respiratory sound. Respiratory sound is composed of heart
sound and lung sound, and the main frequency components
of these two sounds overlap with each other. To detect the
locations of heart sound segments in such adverse condition
accurately, the proposed method employs following steps.
First, the Shannon entropy feature is extracted for robust
representation of respiratory signal for different flow rates.
Second, the probabilistic models are constructed by training
HMM. Finally, the location of heart sound segments are ef-
ficiently estimated by the Viterbi decoding algorithm. The
experimental results showed that the proposed heart sound
detection method outperforms the three well-known heart
sound detection methods in the literature. The average false
negative rate (FNR) values for the proposed method are
5.4 ± 2.4 and 6.3 ± 1.3 for both low and medium respiratory
flow rate, respectively, which are significantly lower than that
of the compared methods in the literature.

1. INTRODUCTION

Respiratory sound carries valuable information about the state
of the respiratory system including lung and trachea. Hence
auscultation of respiratory sound is essential in detection
various pulmonary diseases with non-invasive manner. The
main difficult in auscultation process is to extract relevant
information from respiratory sound. Most of the auscultation
case, it is necessary to focus on the lung sound in respiratory
sound and this requires removing heart sound signal from
respiratory signal. The difficulty of cancellation heart sound
from lung sound comes from overlapping regions of the both
sound in time and frequency domains. Hence, over the recent
years, various techniques of heart sound cancellation meth-
ods have been proposed [1, 2, 3] for this purpose. In most
of the cancellation methods, the first step is to determine the
location of main components of heart sound segment in respi-
ratory sound, and then a heart sound cancellation algorithm is
mainly applied to those segments to remove the effect of heart
sound. Since the performance of these types of cancellation

methods depend upon how accurately the locations of heart
sound signals are estimated, the determination of the location
of heart sound in respiratory sound has been studied by using
different methods such as multi-resolution [1], [4] and [5]
variance fractal dimension [6], the adaptive filtering [3] and
[7], the non-linear prediction [2] and recently temporal fuzzy
clustering technique [8]. Various methods described above
use an adaptive threshold to make decision about locations of
HS and non-HS segments. The main drawback of threshold
based methods is that they are easily affected by rapid sig-
nal variations, and due to this reason, the misclassifications
occur in such regions frequently. Respiratory sound is made
up both heart and lung sound components which contains
inhale and exhale sounds of breathing mechanism. To detect
heart sound locations in respiratory signal accurately, it is
necessary to use more sophisticated method, robust against
to signal variation, than basic thresholding methods. There-
fore, in this work, we propose heart sound detection method
based on Hidden Markov Models (HMM) to improve the
performance of the detection process. HMM is powerful
probabilistic model,which is broadly used in speech recogni-
tion and segmentation applications. The main contribution of
this work is to establish a sophisticated (relative to threshold
based method) and trainable probabilistic model, which is
capable of struggling with the statistical variations of res-
piratory signal, for the purpose of detection the location of
heart sound segments in respiratory signal accurately. The
performance of the proposed heart sound detection method is
compared with the three well-known HS detection algorithms
namely EFT [4], SSA [5] and TFCM [8], and the experi-
mental results show that the proposed method outperforms
other three method in terms of false negative rate (FNR), false
positive rate (FPR). The structure of this paper is as follows:
Section 2 presents the proposed algorithm. The experimental
framework and experimental results are given in Section 3.
We summarize our main conclusions and future work plan in
Section 4.

2. PROPOSED METHOD

This work proposes a new framework for heart sound de-
tection in respiratory sound based on the Hidden Markov
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Model (HMM) which is a powerful statistical tool for model-
ing generative sequences. The proposed algorithm has three
main stages: feature extraction, description and training of
the model parameter, and detection. In the feature extraction
stage, the Shannon entropy feature is extracted for each frame
of respiratory sound. In the modeling stage, heart and lung
sounds are assumed to be generated by HMM and the aim of
this stage is to estimate the models parameters using available
training data. In the third stage, the detection of heart sound
in respiratory sound is done by the Viterbi algorithm based
on the estimated models.

2.1. Feature Extraction

The various studies in the literature show that Shannon en-
tropy is a powerful features in heart sound detection task in
terms of both accuracy and robustness [4], [5] and [8]. Hence,
following these studies, the Shannon entropy is selected as
feature value in this work to represent respiratory sound effi-
ciently. The feature extraction procedure is described in [4]
in detail and summarized as follows. A respiratory sound is
first divided into overlapping frames and then, for each frame
the probability density function (pdf) is estimated by the non-
parametric normal kernel estimation method [9]. Let P (k, i)
be discretized version of the estimated pdf, where value i de-
notes the index of the bin of probability density function and
k denotes the frame number of respiratory sound. Then, the
Shannon entropy, zk for kth frame is calculated as follows

zk = −
M∑

i=1

P (k, i) log2(P (k, i)) (1)

where M is the total number of bin in the pdf.

2.2. Topology of the Hidden Markov Model (HMM)

In the proposed HS detection algorithm, the generation of
respiratory sound is modeled by ergodic two states HMM.
The first state represents the respiratory sound contains heart
sound with lung sound, and it is denoted as HS. The second
sate is characterized the respiratory sound contains only lung
sound, and it is called as non-HS. The topology of the pro-
posed HMM is shown in Fig.1. The a formal characterization
of the proposed HMM is explained as follows

• Initial state probabilities: The probability that the ith
state is the initial state, and defined as,

πi , P (s1 = i) i ∈ {1, . . . , r} (2)

where,
∑r

i=1 πi = 1.

• State transition matrix: sk ∈ S = {1, . . . , r} is the fi-
nite state variable. In this work, each state represents
a respiratory segments: HS and non-HS. The state’s

π11 π22

π12

π21

non-HSHS

Fig. 1. The topology of the proposed ergodic HMM

Markov chain dynamics are governed by a transition
probability matrix Π = [πij ] defined as

πij , P (sk+1 = j|sk = i), i, j ∈ {1, . . . , r} (3)

where,
∑r

j=1 πij = 1, j ∈ {1, . . . , r}

• Observation likelihood: The observation probability
density function defines the likelihood that state i gen-
erates the output zk.

p(zk|sk = i) , N (zk; μi, Σi), i ∈ {1, . . . , r} (4)

where the notation N (z; μ, Σ) stands for a Gaussian
probability density function for dummy variable z
which has a mean μ and covariance Σ.

2.3. Learning of the Model Parameters

As explained in previous section, the generation of respiratory
signal is modeled by HMM. The parameter set for the jth
state can be written as {πj , μj , Σj}. Considering two states’
parameters and the state transition matrix Π = [πij ], the total
parameter set, Θ can be defined as

Θ ,
{
{πij , πi, μi, Σi}

r
i,j=1

}
(5)

The total parameter set of the proposed method Θ is estimated
by the maximum likelihood (ML) algorithm using available
training data, as described in [10].

2.4. Detection of the heart sound locations

Detection of heart sound segments in respiratory signal is per-
formed by estimating the most likely sate sequence using ob-
servation sequence and HMM’s parameter set Θ. In HMM
theory, the estimation of the state sequence is known as de-
coding problem [10]. The decoding process estimates the un-
derlying unobservable state sequence in optimal manner such
that it best explains observation sequence, and it is explained
briefly as follows. Let Z , [z1, . . . , zN ] be observation fea-
tures, S , [s1, . . . , sN ] be related state sequence and Θ be

2
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the corresponding HMM. The state sequence is estimated by
solving following optimization problem

Ŝ = arg max
S

p(S|Z, Θ) (6)

where Ŝ is the single best state sequence out of all possible
state sequences. The solving equation (6) is done well-known
Viterbi algorithm based on dynamic programming algorithm
[10].

2.5. Multi-dimensional features

As explained in previous section, one dimensional Shannon
entropy feature is extracted from respiratory signal. A one di-
mensional feature set can be converted into multi-dimensional
feature set by a feature augmentation procedure. In this work,
the feature augmentation is employed as follows. Let Z ,
[z1, . . . , zN ] be N single dimensional features and m be the
dimension of augmented feature to be generated. The m di-
mensional augmented feature at nth frame, zm

n is defined as

zm
n = [zn−l, . . . , zn, . . . , zn+r]

T . (7)

where, m , l + r + 1. The overall multi-dimensional feature
set Z can be defined as follows

Z , [zm
l , . . . , zm

N−r]. (8)

In this work, the multi-dimensional observation feature set
defined in (8) is also employed in training and testing of the
proposed HS detection method based HMMs.

3. EXPERIMENTAL STUDIES

3.1. Database and Database labeling

The database used in this study (originally used in [4] and
[11]) is a real respiratory sound which contain five healthy
subjects with three females. It was recorded using Siemens
EMT25C from third intercostal space anteriorly on the right
upper lung lobe. Recording of database is performed for three
target flow rates: low, medium and high flow rate. Following
the studies [4] and [5], the proposed method and other com-
pared methods are tested under two respiratory flow rates: low
and medium. Each part of the respiratory signal has about
length of 20s. The database is labeled as HS and non-HS by
three trained persons under the control of a cardiologist to
measure the performance of the methods. The labeling is per-
formed by using the WaveSurfer toolkit [12], and decisions
for boundaries of heart sound are made by examining time
waveform, spectrogram, and listening of the sound of data.

3.2. Performance Measures

To measure the performance of the methods, we calculated
four quantitative results: 1) true-positive (TP) when a HS

sound is correctly detected by the algorithms; 2) true-negative
(TN) when a non-HS sound is correctly detected by the algo-
rithms; 3) false-negative (FN) when a HS sound is missed;
and 4) false-positive (FP) when a non-HS is detected as a HS
sound. To evaluate the performance of the proposed localiza-
tion algorithm, the FN rate (FNR) and the FP rate (FPR) are
calculated. The calculation rules of the metrics can be seen as
follows

FNR ,
FN × 100
TP + FN

, FPR ,
FP × 100
TN + FP

(9)

Moreover, we use the detection error trade-off (DET) curve
as a performance measure which visually depicts the perfor-
mance and performance trade-off of a classification model
[13]. The DET curve is created by plotting the FNR values
against the FPR values at all threshold values.

3.3. Experimental Setup

All experiments for heart sound localization are conducted
and all the methods are evaluated on the same database de-
scribed above. Mean and standard deviation values in all
figures and tables are obtained using a set of five subjects.
The Shannon entropy features are calculated using a 20 ms
window with 10 ms shift. The HMMs used in this work are
subject-dependent. For each person two separate HMMs are
trained for low and medium respiratory flow rates. They are
tested using 5-fold cross-validation. For each fold, four-fifth
the data (15s) are used for training and one-fifth (5s) for test-
ing. Cross-validation performance measures are computed as
the average of all 5 folds.

3.4. Experimental Result and Discussion

This section presents our experimental results. For a bet-
ter presentation and assessment, we divide this subsection
into two subsections as measurement dimension selection and
method comparison. The performance of the various dimen-
sion of observation in HMM is examined in the first subsec-
tion. In the second subsection, the heart sound detection per-
formance of the proposed method is compared in detail with
three well-known methods available in the literature.

3.4.1. Experimental Results for Feature Dimension Selection

In this subsection, various experiments with different dimen-
sional feature set defined in (7) are carried out, and their HS
detection performance are compared with each other. Fig.2
shows the Detection Error Rate (DER) performance of vari-
ous m values for both low and medium respiratory flow rates,
respectively. From this figure one can note that the best fea-
ture dimension, m, is 3 ( l = 1, r = 1) for HS detection task
among all others and the corresponding DER value is 4.85 and
4.9 for low and medium respiratory flow rates, respectively.
Considering the experimental results given in this figure, we
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Fig. 2. DER results (%)of the proposed method for the vari-
ous m values at low and medium respiratory flow rates

draw following conclusion. Since it adds temporal informa-
tion to the detection system, the multi-dimensional observa-
tion set improves the performance of the detection task.

3.4.2. Experimental Results for Method Comparison

In this subsection, our aim is to evaluate the heart sound de-
tection performances of the proposed HMM and compare it
with three well-known methods: (EFT) [4] ,(SSA) [5] and
TFCM [8] in the literature for the same experimental condi-
tion. DET curves of the other methods and the performance
of the proposed method as a single point are shown in Fig.3
for low respiratory flow rate as well as in Fig.4 for medium
respiratory flow rate. From these figures we note that the pro-
posed method gives considerably lower error rates than that
of the other methods with the SSA and EFT methods having
the highest DET curve values. For a quantitative comparison
of the performance of the all methods, we computed the FNR
values of each method at same FPR values of HMM, and the
corresponding results are given in Table 1 and Table 2. Based
on the results of these tables, we note that the proposed HMM
method yields the lowest FNR values for low and medium res-
piratory flow rates. For instance, the HMM method for low
respiratory flow rate has a mean FNR value (5.4) lower than
that of the TFCM (8.9) , indicating approximately a 39.3%
lower FNR value. Considering medium respiratory flow rate
(Table 2), we notice that, as expected, errors at the medium
flow rate become higher than the ones at the low flow rate.
Moreover the HMM has better performances than the other
methods at the medium flow rate. It has a mean FNR value
(6.3) lower than that (10.4) by the TFCM method, indicating
approximately 39.4% lower FNR value.
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Fig. 3. Comparative results based on DET graphs for the
TFCM, EFT and SSA methods in low respiratory flow rate.
The result of HMM method is given in single point
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Fig. 4. Comparative results based on DET graphs for the
TFCM, EFT and SSA methods in medium respiratory flow
rate. The result of HMM method is given in single point.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we examined the performance of Hidden
Markov Model (HMM) in heart sound detection in respi-
ratory signal. In the proposed method, Shannon entropy
features are computed for each frame of the respiratory sound
and then, using these features HMMs are trained for each
segment of the respiratory sound (HS and non-HS) using
available training data. The detection part of the proposed
method is based on Viterbi algorithm. The experimental re-
sults confirm that the performance of the proposed method
is better than the other implemented methods (EFT[4], SSA

4



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Table 1. Mean and Standard Deviation Results (%) of the
HMM and Other Compared Methods at Low Respiratory
Flow Rates

Region Method FNR% FPR%

SSA 15.7 ± 10.8 4.8
Low EFT 16.1 ± 11.3 4.8

TFCM 8.9 ± 4.8 4.8
HMM 5.4 ± 2.4 4.8

Table 2. Mean and Standard Deviation Results (%) of the
HMM and Other Compared Methods at Medium Respiratory
Flow Rates

Region Method FNR% FPR%

SSA 19.6 ± 6.9 4.6
Medium EFT 19.0 ± 6.3 4.6

TFCM 10.4 ± 3.3 4.6
HMM 6.3 ± 1.3 4.6

[5] and TFCM [8]) given in the literature. The experimental
results show that the proposed method have approximately
39.3% and 39.4% lower FNR than those obtained by TFCM
method at low and medium respiratory flow rate, respectively.
In this work, the HMMs are trained in a subject-dependent
manner. Such models can be used for patients having chronic
pulmonary disease such that gathering training data from
those subjects is possible. On the other hand, it is also possi-
ble that there may be no available training data for a normal
subject (not having chronic illness). In such case, it is nec-
essary to use available training data collected from other
subjects and generalize the training procedure in a way that
it is performed in a subject independent manner with some
adaptation procedures. This type of training and heart sound
detection procedures constitutes our future work plan.
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