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ABSTRACT

This paper proves the asymptotic convergence of the mean-
squared error (MSE) of a distributed Kalman filter that we
have previously proposed. This result shows that our dis-
tributed Kalman filter can track with bounded MSE any ar-
bitrary linear dynamics.

Index Terms— Distributed Kalman filter, asymptotic
convergence, mean-squared error

1. INTRODUCTION

Distributed problems have been extensively studied in the last
few years, e.g., [1], [2], [3], [4], to perform distributed av-
eraging, consensus, detection or parameter estimation. Dis-
tributed estimation of linear time processes has also been the
focus of intense research. In [5] and [6], a distributed version
of Kalman filter is proposed where all agents have the same
copy of the linear process and run the same local copy of a
Kalman filter after performing consensus on the innovations.
In [7], the process itself is distributed so that the distributed
Kalman filter proposed in this reference is different in dif-
ferent agents, avoiding the problem of agents of limited re-
sources running locally high dimensional Kalman filters. The
filter in [7] still performs cycles of consensus in between mea-
surements, see the reference for details.

In [8], a new distributed Kalman filter structure is pro-
posed where sensors run copies of local filters, exchanging
their states according to a gossip protocol. This reference
shows that under an ergodic Markov schedule (of visiting the
agents) the gossip distributed Kalman filter exhibits asymp-
totically optimal behavior (unbiasedness, consistency, effi-
ciency). In [9] and [10], a distributed Kalman filter is pro-
posed and the concept of Network Tracking Capacity (NTC)
is introduced. These references show that the proposed dis-
tributed linear estimator can track unstable linear dynamics
as long as the degree of instability is bounded by the NTC.

In [11], we have proposed a distributed Kalman filter of
the consensus + innovations type that extends [4] and [12]
to linear dynamic processes. In [11], we proved this lin-
ear distributed Kalman estimator is asymptotically unbiased.

This work has been supported by AFOSR grant FA95501010291 and by
NSF grants CCF1011903 and CCF1018509.

In this paper we show that it can track with bounded mean-
squared error (MSE) any arbitrary unstable dynamics, as long
as the ratio of the algebraic connectivity and the largest eigen-
value of the graph Laplacian of the network topology is lower
bounded. The bound depends only on the network topology
whereas in prior work the NTC depends both on the network
topology and the observation model.

The rest of the paper is organized as follows: Section
2 introduces the notations and provides a preliminary back-
ground. Section 3 includes the distributed Kalman filtering
algorithm. In Section 4, we discuss the different design pa-
rameters of the estimator. In Section 5 the convergence of the
error process is proved and analyzed its performance. Section
6 concludes the paper.

2. PRELIMINARIES

We define θ(i) ∈ RM as the state vector of a linear dynamical
system with discrete time index i:

θ(i+ 1) = θ(i) +Wphθ(i) + v(i) (1)

where, the system matrix is Wph ∈ RM×M and the input
noise in the system v(i) ∼ N (0, V ). The initial condition of
the state vector is normally distributed, θ(0) ∼ N (θ̄0,Σ0). In
most distributed applications, Wph is highly sparse.

Each of the N agents in the network observes only a por-
tion of the state θ(i). Agent n makes the measurement:

zn(i) = Hnθ(i) + rn(i) (2)

where: zn(i) ∈ RMn has dimension Mn � M . The obser-
vation matrix is Hn ∈ RM×Mn and the observation noise is
rn(i) ∼ N (0, Rn). For ease of the presentation, we introduce
a vector notation. Let:

z(i) = Hθ(i) + r(i) (3)

where,

z(i) =

 z1(i)
...

zN (i)

 , H =

H1

...
HN

 , r(i) =

 r1(i)
...

rN (i)

 (4)
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The observation noise r(i) ∼ N (0, R), where the noise co-
variance is R = blockdiag[R1, . . . , RN ].

The system noise {v(i)}, the observation noise {r(i)},
and the initial state {θ(0)} are assumed to be a Gaussian sys-
tem of uncorrelated random vectors. The noise sequences
{v(i)} and {r(i)} are statistically time-independent.

2.1. System Observability

Denote the state update matrix in (1) by A = IM + Wph.
Given the dynamical system in (1) and the observation model
in (3), a centralized Kalman filter could estimate the system
state with bounded error covariance if the (A,H) is observ-
able. Since the pair (A,H) is observable, the Kalman gain K
stabilizes the closed loop matrix and the steady state Kalman
filter is asymptotically stable, i.e., the closed loop filter matrix
(A−AKH) has poles inside the unit circle, irrespective of A
being or not asymptotically stable. In this paper, we assume
the system to be globally observable. Then the observability
Grammian

O = [HT ATHT . . . (AM−1)THT ]T (5)

is full-rank and the matrix OTO is invertible. We note that
global observability does not imply local observability, i.e.,
none of the agents is required to be observable.

2.2. Network Topology

The communication among the agents is modeled with the
undirected graph G = (V, E). The Laplacian matrix of G is
denoted by L. We assume the network to be connected. Then,
the eigenvalues of the positive semi-definite matrix L are 0 =
λ1(L) < λ2(L) ≤ ... ≤ λN (L), with the algebraic connec-
tivity λ2(L) to be strictly positive. Refer to [13] for more
details on graph properties.

The stability of the dynamical system (1) is characterized
by the induced 2-norm of the system matrix a = ‖A‖ =
‖IM +Wph‖. We will consider (1) to be unstable, i.e., a > 1.
Define the averaging rate factor γ as the ratio of the algebraic
connectivity and the largest eigenvalue of L. In this paper, we
make the following assumption on the network topology:

γ =
λ2(L)

λN (L)
≥ a− 1

a+ 1
(6)

The lower bound (6) on γ makes sure that the agents in the
network can fuse their data among themselves at a rate faster
than the dynamics of the system. The distributed algorithm
discussed in this paper can track any arbitrary linear dynam-
ics if the network topology is designed in such a way that it
satisfies assumption (6). This is our version of the NTC intro-
duced in [9, 10].

3. THE DISTRIBUTED ALGORITHM

In this section, we present the distributed algorithm that we
proposed in [11] for estimation of any arbitrary linear dynam-
ical system (1). Let xn(i) be the estimate of the state θ(i) by
agent n at time i given the observations up to time i−1. Each
agent implements the following distributed Kalman filter:

3.1. Consensus on the local estimates

Each agent combines its estimate xn(i) with its neighbors’
estimates via consensus:

xn(i) = xn(i)− β
∑
l∈Ωn

(xn(i)− xl(i)) (7)

where, β is the consensus weight and Ωn is the neighborhood
of agent n. The initial condition is xn(0) = θ̄0,∀n. In com-
pact vector notation, equation (7) can be written as:

x(i) = x(i)− β(L⊗ IM )x(i), x(i) =

x1(i)
...

xN (i)

 (8)

The symbol ⊗ denotes the Kronecker matrix product. The
initial condition becomes x(0) = 1N ⊗ θ̄0.

3.2. Pseudo-innovations

We define at each agent the pseudo-innovations as:

νn(i) = HT
n

(
zn(i)−Hnxn(i)

)
(9)

Each agent estimates the global average ν̂n(i) of the pseudo-
innovations. It involves two steps. A consensus step:

ν̂n(i) =
∑
l∈Nn

wnlν̂l(i), (10)

then followed by the update:

ν̂n(i+ 1) = ν̂n(i) + (νn(i+ 1)− Cnν̂n(i)) (11)

where, W = {wnl} is a fusion weight matrix with the same
sparsity as the graph Laplacian L andNn is the closed neigh-
borhood of agent n, which includes n also. The initial condi-
tion is ν̂n(0) = νn(0). The positive semi-definite matrix Cn
has sparsity such that when multiplied with ν̂n(i− 1) results
in a vector with the same sparsity as νn(i).

Equations (9)-(11), in compact notation are:

ν(i) = DT
Hz(i)−DHx(i) (12)

ν̂(i) = (W ⊗ IM )ν̂(i) (13)
ν̂(i+ 1) = ν̂(i) + (ν(i+ 1)− Cν̂(i)) (14)

where, ν(i) = [νT1 (i) . . . νTN (i)]T and

DH = blockdiag{H1, ...,HN}
DH = blockdiag{HT

1 H1, ...,HNH
T
N}

C = blockdiag{C1, ..., CN}
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3.3. Predictor

Next each agent combines the state fusion (7) with the
pseudo-innovations (11) to obtain its estimate of the cur-
rent state vector. Each agent then predicts the state vector at
time i+ 1 on the basis of the observations up to time i as:

xn(i+ 1) = (IM +Wph)(xn(i) +Kn(i)ν̂n(i)) (15)

whereKn(i) is the local estimator gain at agent n. In compact
notation, equation(15) can be written as:

x(i+ 1) = (IN ⊗ (IM +Wph))(x(i) +K(i)ν̂(i)) (16)

where, K(i) = blockdiag{K1(i), ...,KN (i)}.

In [11], we showed that the distributed Kalman estimator
(15) is asymptotically unbiased. Next, we analyze the error
process of the distributed estimator (16) and how to design
the estimator parameters to obtain bounded MSE.

4. PARAMETER DESIGN

In this section, we discuss the design of three key parameters
of the distributed Kalman estimator: the network topology
L, the time-varying estimator gain K(i), and the matrix C.
The fusion matrix is dependent on the network topology L.
We will consider the same fusion weight martix for both state
fusion and pseudo-innovations fusion, i.e., W = IN − βL.
We design the network topology such that:

‖A‖‖W‖ = a‖IN − βL‖ < 1 (17)

where, ‖IN−βL‖ = max{1−βλ2(L), βλN (L)−1} (18)

Under assumption (6) on the averaging rate factor γ, β exists
and condition (17) is satisfied for all β ∈

(
a−1

a.λ2(L) ,
a+1

a.λN (L)

)
.

The optimal β∗ is given by:

1− β∗λ2(L) = β∗λN (L)− 1

i.e., β∗ =
2

λ2(L) + λN (L)
(19)

The above analysis, similar to convergence rate analysis for
distributed inference on graphs in [14], assumes that the sys-
tem (1) is unstable (a > 1). If the system is stable, then
connectedness of the network (λ2(L) > 0) is sufficient for
the convergence of the distributed algorithm.

The next design parameter of the estimator is the gain ma-
trix K(i). The initial values and the update equations for the
gain matrices Kn(i) at each agent n are:

Kn(0) =
(
HT
nHn

)+

(20)

Kn(i+ 1) =
∑
l∈Nn

wnlKl(i) (21)

where F+ is the Moore-Penrose pseudo-inverse of the matrix
F as defined in [15]. The matrix W = {wnl} = IN − βL is
the fusion weight matrix for the gain matrices. Note that the
gain matrix Kn(i) at each agent converges to the average of
the initial gain matrices Kn(0) of all the agents.

Define PNM = 1
N (1N ⊗ IM )(1N ⊗ IM )T and note that

PNM
(
W ⊗ IN

)
= PNM . It can be shown that:

PNMK(i+ 1) = PNMK(i)
(
W ⊗ IN

)
, (22)

from which

(I2⊗PNM )

[
I K(i+1)
0 I

]
=

[
PNM PNMK(i+1)

0 PNM

]
=

[
PNM

(
W⊗IN

)
PNMK(i)

(
W⊗IN

)
0 PNM

(
W⊗IN

) ]
=
(
I2⊗PNM

) [I K(i)
0 I

] (
I2⊗(W⊗IN )

)
Taking the 2-norm on both sides, then using the sub-multiplicative
property of the matrix norm and properties of the Kronecker
product, we get

∥∥∥∥I K(i+1)
0 I

∥∥∥∥ ≤
∥∥∥∥I K(i)
0 I

∥∥∥∥ ∥∥W∥∥ ≤
∥∥W∥∥i+1

∥∥∥∥I K(0)
0 I

∥∥∥∥ (23)

We design β such that, for givenK(0) and observation model
DH , there exists some i0 > 0 such that for all i > i0

‖W‖i
∥∥∥∥I K(0)

0 I

∥∥∥∥∥∥∥∥ I 0
−DH I

∥∥∥∥ < 1 (24)

and so, ∥∥∥∥I K(i)
0 I

∥∥∥∥∥∥∥∥ I 0
−DH I

∥∥∥∥ < 1. (25)

We will use the above inequality in the next section. Note
that the gain terms can be precomputed and stored at each
agent to reduce the running complexity of the distributed al-
gorithm. The pseudo-innovations gain matrix C is positive
semi-definite and it is designed such that

‖I − C‖ ≤ 1. (26)

5. PERFORMANCE ANALYSIS

Define the error process e(i):

e(i) = x(i)− 1N ⊗ θ(i) (27)
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Using (16) and (1), with A = IM +Wph,

e(i+ 1) = x(i+ 1)− 1N ⊗ θ(i+ 1)

= (IN⊗A)
(
x(i) +K(i)ν̂(i)

)
− 1N⊗

(
Aθ(i) + v(i)

)
= (IN⊗A)

((
W⊗IM

)
x(i)− 1N⊗θ(i) +K(i)ν̂(i)

)
−1N ⊗ v(i)

= (IN⊗A)
((
W⊗IM

)(
x(i)− 1N⊗θ(i)

)
+K(i)ν̂(i)

)
−1N ⊗ v(i)

= (IN⊗A)
((
W⊗IM

)
e(i) +K(i)ν̂(i)

)
−1N⊗v(i) (28)

We write equation (12) of the pseudo-innovations as follows:

ν(i) = DT
Hz(i)−DHx(i)

= DT
HDH

(
1N⊗θ(i)

)
−DHx(i) +DT

Hr(i)

= −DH

((
W⊗IM

)
x(i)− 1N⊗θ(i)

)
+DT

Hr(i)

= −DH

(
W⊗IM

)
e(i) +DT

Hr(i) (29)

From equation (14), the pseudo-innovations estimates are:

ν̂(i) = ν̂(i− 1) + (ν(i)− Cν̂(i− 1))

=
(
INM − C

)(
W⊗IM

)
ν̂(i− 1)

−DH

(
W⊗IM

)
e(i) +DT

Hr(i) (30)

Equations (30) and (28) imply:

e(i+ 1) = (IN⊗A)
((
INM −K(i)DH

)(
W⊗IM

)
e(i)

+K(i)
(
INM − C

)(
W⊗IM

)
ν̂(i− 1)

)
+
(
IN⊗A

)
K(i)DT

Hr(i)− 1N ⊗ v(i) (31)

In compact form, equations (30) and (31) can be written as:[
e(i+1)
ν̂(i)

]
=[

(I⊗A)
(
I−K(i)DH

)(
W⊗I

)
(IN⊗A)K(i)

(
I−C

)(
W⊗I

)
−DH

(
W⊗I

) (
I − C

)(
W⊗I

) ]
×
[
e(i)

ν̂(i−1)

]
+

[(
IN⊗A

)
K(i)DT

Hr(i)− 1N⊗v(i)
DT

Hr(i)

]
(32)

i.e.,

ẽ(i+1) = Ã(i)ẽ(i) + η(i) (33)

where,

ẽ(i) =

[
e(i)

ν̂(i−1)

]
, (34)

η(i) =

[(
IN⊗A

)
K(i)DT

Hr(i)−1N⊗v(i)
DT
Hr(i)

]
, (35)

Ã(i)=

[
(I⊗A)

(
I−K(i)DH

)(
W⊗I

)
(I⊗A)K(i)

(
I−C

)(
W⊗I

)
−DH

(
W⊗I

) (
I − C

)(
W⊗I

) ]
=

[
I⊗A 0
0 I

] [
I−K(i)DH K(i)

−DH INM

] [
I 0
0 I−C

]
×
[
W⊗I 0

0 W⊗I

]
=

[
I⊗A 0
0 I

] [
I K(i)
0 I

] [
I 0

−DH I

] [
I 0
0 I−C

]
×
[
W⊗I 0

0 W⊗I

]

where, the last step is performed using Schur comple-
ment. Taking the 2-norm on both sides, then using the sub-
multiplicative property of the matrix norm and properties of
the Kronecker product, we get

∥∥Ã(i)
∥∥ ≤ ∥∥A∥∥∥∥∥∥I K(i)

0 I

∥∥∥∥ ∥∥∥∥ I 0
−DH I

∥∥∥∥∥∥∥∥I 0
0 I−C

∥∥∥∥∥∥W∥∥
This and equations (17), (25), and (26) imply,

∥∥Ã(i)
∥∥ < 1, ∀i ≥ i0. (36)

To analyze the mean-squared boundedness of the estimator
(16), we need to analyze the error process (33). Define φ(i)
as the noise covariance matrix of the noise process η(i) in the
error process ẽ(i). The noise process η(i) is a linear combina-
tion of the system noise and the observation noise. Note that
it satisfies:

E
[
η(i)

]
= 0, E

[
η(i)ηT (j)

]
= 0, i 6= j (37)

E
[
η(i)ηT (i)

]
= φ(i) (38)

The time dependency of φ(i) comes from the time-varying
gain matrix K(i). Since the elements of the gain matrix are
designed to converge, see (21), there exists an upper bound
Φ:

∥∥φ(i)
∥∥ ≤ Φ, ∀i. (39)

Define the error covariance matrix S(i+ 1) as:

S(i+ 1) = E
[
ẽ(i+ 1)ẽT (i+ 1)

]
= Ã(i)S(i)ÃT(i) + φ(i)

= π0,iS(0)πT0,i +

i∑
j=0

πj,iφ(j)πTj,i (40)

where, πj,i =

i∏
k=j

Ã(k).

Since
∥∥Ã(i)

∥∥ < 1, ∀i ≥ i0, π0,∞ = 0, and so:

4
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S(∞) = lim
k→∞

s(i+ 1) =

∞∑
j=0

πj,∞φ(j)πTj,∞ (41)

Taking 2-norm on both sides,∥∥S(∞)
∥∥ ≤

∞∑
j=0

∥∥πj,∞φ(j)πTj,∞
∥∥ ≤ ∞∑

j=0

∥∥πj,∞∥∥2 ∥∥φ(j)
∥∥

≤ Φ

∞∑
j=0

∥∥πj,∞∥∥2
= Φ

∞∑
j=i0

∥∥πj,∞∥∥2

≤ Φ

∞∑
j=i0

∞∏
k=j

∥∥Ã(k)
∥∥ ≤ Φ

∞∑
j=i0

∞∏
k=j

∥∥Ã(i0)
∥∥2

≤ Φ(1 + ρ2 + ρ4 + ρ6 + . . .)

≤ Φ

1− ρ2
(42)

where, ρ = ‖Ã(i0)‖ < 1. As it can be seen in (42), the 2-
norm of the steady state error covariance is upper bounded.
The upper bound depends on the 2-norm of the Ã(i0) matrix
and the 2-norm of the noise covariance matrix of the error
process.

6. CONCLUSIONS

In this paper, we have designed a new class of single time-
scale distributed estimation algorithms of the Kalman filter
type that can track any arbitrary linear dynamical system
with bounded mean-squared error. We analyzed the per-
formance of the distributed Kalman estimator. The mean-
squared boundedness of our estimation algorithm depends on
the lower boundedness of the graph Laplacian of the multi-
agent network topology and is independent of the observation
model, as long as the system is globally observable. This
contrasts with prior work [9] and [10] where the bounded-
ness of the distributed estimator depends on both the network
topology and the observation model.
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