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ABSTRACT

Incremental combinations were first introduced as a
solution to the convergence stagnation issue of parallel-
independent combinations, both convex and affine. Since
then, this topology has been shown to enhance performance
to the point of allowing a combination of LMS filters to
outperform the APA with lower complexity. In order to bet-
ter understand and improve this structure, the present work
develops mean and mean square transient models for the in-
cremental combination of two LMS filters, that is shown to
be a generalization of the data reuse LMS (DR-LMS). By for-
mulating the optimal supervisor and deriving its constraints,
the previously proposed adaptive combiner is redesigned to
improve the combination’s overall performance, as shown by
simulations and analysis.

Index Terms— Adaptive filtering, Combination of adap-
tive filters, Incremental combination, Transient analysis

1. INTRODUCTION

Combination of adaptive filters (AFs) is considered an estab-
lished approach to improve performance when the accurate
design of a single filter is difficult [1–4]. It consists of mix-
ing a set of AFs—the components—by means of a supervi-
sor whose task is to achieve universality, in the sense that the
overall system is at least as good—normally relative to the
mean-square error (MSE)—as the best filter in the set.

Usually, the component filters run independently while
adaptive parameters merge their coefficients. This structure
has been extensively investigated using different step sizes,
orders, adaptive algorithms, and supervising rules [3–6].
However effective, this combination presents a well-known
convergence stagnation due to the accurate filter’s delay in
reaching the MSE of the fast one. This issue was initially
addressed using conditional unidirectional transfers of coeffi-
cients [6], but it was not until recently that more effective so-
lutions have been found through changes in topology [1,2,7].

Among these solutions, the incremental structure put for-
ward in [1] has been shown to have properties beyond ad-
dressing the stagnation effect, specially in relation to conver-
gence performance (Fig. 1). Fig. 1a compares a rankK Affine
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Fig. 1. Comparing APA, iDRLMS, and iLMS (K = 10)

Projection Algorithm (APA) [8] to the incremental combina-
tions of N LMS filter with (iDR-LMS) and without (iLMS)
data reuse (DR)—see Section 2. It is clear that these combi-
nations can match the performance of APA with lower com-
plexity [9]. Furthermore, even though the iLMS behavior is
similar to that of the iDR-LMS for white signals, the use of
DR is valuable for correlated signals (Fig. 1b).

So as to better understand and design this combination,
the present work analyzes different aspects of its performance
by (i) showing that this combination is, in fact, a generaliza-
tion of the data reuse LMS (DR-LMS) [10, 11]; (ii) modeling
the mean and mean-square transient performance of an incre-
mental combination of two LMS filters (iLMS); (iii) formu-
lating the optimal supervisor and showing that its unbiased-
ness constraint is different from that of the parallel topology;
(iv) redesigning the adaptive supervisor from [1] according to
these results; and (v) using simulations to show the accuracy
of the models and illustrate the aforementioned contributions.

2. COMBINATION OF ADAPTIVE FILTERS

In a system identification scenario, the n-th component of a
combination of N AFs can be described as

wn,i = wn,i−1 + µnpn, (1)

where wn,i is the M × 1 coefficient vector at iteration i, µn
is a step size, and pn = −Bn∇∗Jn(wn,i−1) is an update di-
rection vector, withBn a positive definite matrix, Jn(wn,i−1)
the underlying cost function the component attempts to mini-
mize, and ∗ denoting the conjugate transpose operation [8,9].
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Usually, Jn(·) involves a function of the n-th component
output estimation error en(i) = dn(i)−un,iwn,i−1, with un,i
selected from a sequence {ui} and dn(i) taken from the mea-
surements

d(i) = uiw
o + v(i), (2)

where wo is an M × 1 vector that models the unknown sys-
tem, ui is a 1 × M regressor vectors that captures samples
u(i) of an input signal with variance σ2

u, and v(i) is a zero-
mean white Gaussian measurement noise with variance σ2

v .
An example is the usual MSE cost function Jn(wn,i−1) =
E |en(i)|2, adopted in the celebrated LMS filter [8]

wn,i = wn,i−1 + µnu
∗
n,ien(i). (3)

A myriad of data distribution structures can be accounted for
using different definitions for un,i and dn(i), including the
DR method {un,i, dn(i)} = {ui−n+1, d(i − n + 1)} of the
iDR-LMS [9]. This work will address the more common data
sharing case {un,i, dn(i)} = {ui, d(i)}.

Finally, the output of the combination at iteration i is
given by the global coefficients wi = f(ηn(i), wn,i), where
ηn(i) represents the action of the supervisor on component n.
Usually, the supervisor adapts ηn(i) attempting to minimize
the global MSE: E |e(i)|2, where e(i) = d(i)− uiwi−1 is the
global error. Using this terminology, data sharing parallel and
incremental combinations are written as

Definition 1 (Parallel combination [2–4]).

wn,i−1 = δ(i− rL)wi−1 + (1− δ(i− rL))wn,i−1

wn,i = wn,i−1 + µnu
∗
i [d(i)− ui wn,i−1]

wi =

N∑
n=1

ηn(i)wn,i

(4)

where δ(·) is Kronecker’s delta, L is a cycle length, and r ∈
N. The first equation accounts for the cyclic feedback strat-
egy introduced in [2]. For L → ∞ the parallel-independent
combination is recovered [3, 4].

Definition 2 (Incremental combination [1, 9]).

w0,i = wi−1

wn,i = wn−1,i + ηn(i)µnu
∗
i [d(i)− ui wn−1,i]

wi = wN,i.
(5)

Note that for ηn(i) = 1 and µn = µ in (5), the DR-LMS
algorithm from [10] is recovered. The analysis hereafter is,
therefore, also applicable to this AF.

3. MEAN PERFORMANCE

Due to space constraints, derivations will be carried on for
N = 2, i.e., for the original combination in [1], assuming

u(i) arises from a real zero-mean i.i.d. process. Therefore,
(5) simplifies to

w1,i = wi−1 + η1(i)µ1u
T
i [d(i)− ui wi−1]

wi = w1,i + η2(i)µ2u
T
i [d(i)− ui w1,i].

(6)

Combining the equations in (6), subtracting fromwo, and em-
ploying the data model in (2) yields

w̃i = w̃i−1 −
[
µ̄(i)− µ′(i)‖ui‖2

]
uTi e(i). (7)

where w̃i = wo − wi is the global coefficients error, µ̄(i) =
η1(i)µ1 + η2(i)µ2, and µ′(i) = η1(i)η2(i)µ1µ2. Despite the
algebraic similarity of (7) to variable step size (VSS) algo-
rithms1, it is conceptually motivated by incremental strate-
gies [12]. In a way, ηn(i) plays the dual role of supervisor
and VSS in incremental combinations.

Before proceeding, the following assumptions are adopted
so as to make the analysis tractable:

A.1 (Data independence assumptions) {ui} constitutes an
i.i.d. sequence of vectors independent of v(j), ∀ i, j. Conse-
quently, {ui, w̃j}, {d(i), d(j)}, and {ui, d(j)} are indepen-
dent for i > j.

A.2 (Supervisor separation principle) Due to ηn(i) converg-
ing slowly compared to variations in ui—and, consequently,
compared to variation of the a priori error ea(i) = uiw̃i−1—,
these variables are separable as in E[ηn(i)ui] = E ηn(i) Eui
and E[ηn(i)ea(i)] = E ηn(i) E ea(i).

The assumptions in A.1 are widely adopted in the adap-
tive filtering literature. In some applications they accurately
describe the behavior of the AF’s inputs, whereas in others
they are taken as approximations [8]. A.2 was inspired by the
separation principle from [8] and has been employed in the
analysis of both convex and affine combinations [13–15].

Now, taking the expected value of (7) and using A.1 and
A.2 yields

E w̃i = [1− E µ̄(i)σ2
u + Eµ′(i)(M + 2)σ4

u] E w̃i−1, (8)

where EuTi ui = σ2
uI , EuTi uiu

T
i ui = (M + 2)σ4

uI , and I is
the identity matrix [8]. A particular case of this result for the
DR-LMS can be found in [11].

Comparing (8) to the model for a single LMS with step
size µ, explicitly [8]

E w̃i = [1− µσ2
u] E w̃i−1,

it is clear that, even though part of the processing in (8) takes
place as with an LMS filter with step size E µ̄(i), a higher or-
der term—Eµ′(i)(M + 2)σ4

u—appears due to the non-linear
characteristics of the adaptive algorithms involved [8].

1A similar interplay occurs with the NLMS algorithm [8].
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4. MEAN-SQUARE PERFORMANCE

The mean-square performance of AFs is usually measured by
the Mean Square Deviation (MSD) and Excess MSE (EMSE)

MSD(i) = E ‖w̃i−1‖2 = Tr(Ki)

EMSE(i) = E ‖ea(i)‖2 = Tr(RuKi) = σ2
uMSD(i),

(9)

where Ki = E w̃i−1w̃
T
i−1. In the sequel, a recursion for Ki is

derived and closed form models for (9) are deduced, first as-
suming only that ui is a Gaussian vector and then simplifying
the resulting expression for small step sizes. The time index
of the supervisor parameters is omitted for clarity’s sake.

Starting from (7),

Ki+1 = E w̃iw̃
T
i = Ki

− E
[
µ̄− µ′‖ui‖2

] [
w̃i−1e

T (i)ui + uTi e(i)w̃
T
i−1
]

+ E
[
µ̄− µ′‖ui‖2

]2
uTi ui|e(i)|2. (10)

Using the data model (2), e(i) = ea(i) + v(i), and since all
terms linearly dependent on v(i) vanish due to A.1 and A.2,

Ki+1 =

Ki − E µ̄
[
w̃i−1w̃

T
i−1u

T
i ui + uTi uiw̃i−1w̃

T
i−1
]

+ Eµ′
[
w̃i−1w̃

T
i−1u

T
i uiu

T
i ui + uTi uiu

T
i uiw̃i−1w̃

T
i−1
]

+ E µ̄2uTi uiw̃i−1w̃
T
i−1u

T
i ui

− 2 E µ̄µ′uTi uiu
T
i uiw̃i−1w̃

T
i−1u

T
i ui

+ E |µ′|2uTi uiuTi uiw̃i−1w̃Ti−1uTi uiuTi ui
+E

[
µ̄2uTi ui − 2µ̄µ′uTi uiu

T
i ui + |µ′|2uTi uiuTi uiuTi ui

]
σ2
v .
(11)

Even though the assumptions from Section 3 will ren-
der (11) more tractable by separating the expectations, higher
order moments of ui must yet be calculated. Assuming that
ui is a Gaussian vector, these moments can be evaluated in
closed form, so that under the initial i.i.d. input assumption—
i.e., EuTi ui = σ2

uI—one gets

EuT
i uiWuT

i ui = σ4
u[Tr(W )I + 2W ]

EuT
i uiu

T
i uiWuT

i ui = (M + 4)σ6
u[Tr(W )I + 2W ]

EuT
i uiu

T
i uiWuT

i uiu
T
i ui = (M + 4)(M + 6)σ8

u[Tr(W )I + 2W ],

where W is some deterministic symmetric matrix. These ex-
pressions can be obtained by direct evaluation of the vector
products. A detailed derivation of the fourth order moment
can be found in [8].

Under A.1 and A.2, (11) becomes

Ki+1 = αKi + β Tr(Ki)I + γ σ2
uσ

2
vI

α = 1− 2 E µ̄σ2
u + 2(M + 2) Eµ′σ4

u + 2β

β = E µ̄2σ4
u − 2(M + 4) E µ̄µ′σ6

u

+ (M + 4)(M + 6) E |µ′|2σ8
u

γ = E µ̄2 − 2 E µ̄µ′(M + 2)σ2
u

+ E |µ′|2(M + 2)(M + 4)σ4
u,

whose trace leads to the MSD recursion

MSD(i+ 1) = A ·MSD(i) + b · Tr(Ru)σ2
v

A = 1− 2 E µ̄σ2
u

+ 2(M + 2) Eµ′σ4
u + (M + 2)β

b = E µ̄2 − 2 E µ̄µ′(M + 2)σ2
u

+ E |µ′|2(M + 2)(M + 4)σ4
u,

(12)

with MSD(0) = ‖wo‖2 assuming w−1 = 0.
This expression can be further simplified assuming small

step sizes, so that higher order powers of µn can be neglected.
Formally, the assumption adopted is that [Tr(Ru)µ1]` → 0,
∀ ` > 2, where µ1 > µ2 without loss of generality. As a
result, A and b in (12) can be replaced by

A′ = 1− 2 E µ̄σ2
u + (M + 2)(E µ̄2 + 2 Eµ′)σ4

u

b′ = E µ̄2.
(13)

The accuracy of (13)—as shown in Section 6—suggests that
the small step sizes assumption yields negligible errors, mak-
ing this recursion valid over a wide range of step sizes.

5. SUPERVISOR ANALYSIS

The design of an effective adaptive supervisor for the incre-
mental combination is still an open issue, although a simple
solution based on error filtering was introduced in [1] for sta-
tionary scenarios. This section will employ the models ob-
tained so far to derive general properties of the incremental
supervisor and improve the existing design.

5.1. Optimal supervisor

The pair {η1(i), η2(i)} that results in the highest local con-
vergence rate is determined by solving

∇η1,η2 MSD(i+ 1) = 0, (14)

since MSD(i + 1) is convex for a given MSD(i) under the
adopted assumptions.

For the previously derived MSD models, (14) becomes

∂

∂η1
MSD(i+ 1) = 2σ2

uµ1[A2 ·MSD(i) + b2 ·Mσ2
v ] = 0

∂

∂η2
MSD(i+ 1) = 2σ2

uµ2[A1 ·MSD(i) + b1 ·Mσ2
v ] = 0,

(15)
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with

An = (M + 2)σ2
u

{
µ′(M + 4)σ2

u

[
ηnµn(M + 6)σ2

u − 1
]

+ ηnµn
[
1− µ̄(M + 4)σ2

u

]
+ µ̄

}
− 1

bn = (M + 2)σ2
u

{
ηnµn

[
µ′(M + 4)σ2

u − µ̄
]
− µ′

}
+ µ̄

for the Gaussian regressor model (12) and An = (µ̄ +
ηnµn)(M + 2)σ2

u − 1 and bn = µ̄ for the small step sizes
model (13). Note that the equations in (15) can only be si-
multaneously satisfied for η1µ1 = η2µ2. Since the closed
form expression for ηn(i) in the Gaussian regressor case is
intricate and the small step sizes approximation leads to good
results—see Section 6—, the former will be omitted.

Hence, solving (15) in the small step sizes case leads to

ηon(i) =
1

µn

MSD(i)

3(M + 2)σ2
u MSD(i) + 2Mσ2

v

, n = 1, 2.

(16)
Note that (16) only serves analytical purposes and cannot be
evaluated exactly in practice since it requires wo to be known.

5.2. Supervisor constraint

In combination of AFs, the supervisor must be constrained to
guarantee the unbiasedness of the overall estimator. In par-
allel combinations, such as convex and affine combinations,
this constraint consists of

∑
ηn(i) = 1 [3, 4]. In the sequel,

this restriction is shown not to apply to incremental combina-
tions, so that the supervisor proposed in [1], which adheres to
this constraint, can be readily improved.

In order to guarantee convergence in the mean, i.e.,
limi→∞ E w̃i = 0, the recursion (8) must meet the condi-
tion |1− E µ̄(i)σ2

u + Eµ′(i)(M + 2)σ4
u| < 1 [8].

From Section 5.1, the optimal supervisor has η1(i)µ1 =
η2(i)µ2, so that the supervisor constraint simplifies to

0 < E ηn(i)µn <
2

(M + 2)σ2
u

, n = 1, 2. (17)

Notice that, from (17), it is possible to have
∑
ηn(i) > 1.

5.3. Adaptive supervisor

In lieu of the results from the previous sections, the supervisor
design proposed in [1] can be readily improved by lifting the
convex constraint and using η1(i) = η(i)/µ1 and η2(i) =
η(i)/µ2. The supervising parameter η(i) can then be adapted
in a deterministic manner using, e.g.,

η(i) =
1

1 + es(i−`)
, (18)

or using a filtered error approach

p(i) = αp(i− 1) + (1− α) |e(i)|2

η(i) = f [p(i)],
(19)

where 0 < α < 1 and f(x) is a linear activation function,
instead of the sigmoidal function employed in [1]. η(i) must
be constrained as per (17) to guarantee unbiasedness. This,
however, does not guarantee mean-square stability. Hence, a
more appropriate way to limit the supervising parameter is by
means of the optimal supervisor (16) value when far from wo:

η(i) ≤ lim
MSD(i)→∞

µnη
o
n(i) =

1

3(M + 2)σ2
u

(20)

6. SIMULATIONS

The simulations in this section were conducted using σ2
u =

1, σ2
v = 10−3, wo = col{1}/

√
M , and M = 10. For the

small step sizes simulations, µ1 = 0.005 and µ2 = 0.003.
Everywhere else, µ1 = 0.05 and µ2 = 0.005. All curves
were averaged over 200 independent realizations.

Fig. 2 and Fig. 3 show the transient models (dashed
curves) overlaid on the numerical experiments. Note that
both models are equally accurate, which confirms the claim
that errors due to neglecting higher order terms in (13) are
small, so that it is valid over a wide range of step sizes.

Fig. 2a uses the deterministic supervisor in (18) with a
convex constraint (η1(i) = η(i), η2(i) = 1− η(i), s = 0.05,
and ` = 1100) and without (η1(i) = η(i), η2(i) = 1, s =
0.05, and ` = 700) to illustrate the effect of lifting such re-
striction. Note that, while the convexly constrained combi-
nation is at most as fast as the fastest component (µ1), the
unconstrained supervisor is able to outperform it. This effect
is enhanced by the small step sizes, so that it is not evident
in Fig. 2b. In this case, the convexly constrained and uncon-
strained supervisor curves are indistinguishable.

Fig. 3 shows the behavior of the combination using the
optimal supervisor (16). In this case, the components’ step
sizes have no impact on the performance of the combination
since ηon(i) is “normalized” by their values—see (16). Note
that the incremental combination is able to improve both tran-
sient and steady-state performance of the combination. This
is a result of the supervisor–VSS duality of ηn.

Last, Fig. 4 compares the performance of different com-
binations with adaptive supervisors in a scenario with abrupt
nonstationarity—at iteration i = 2000, wo → −wo: normal-
ized convex combination (µa = 1.5, β = 0.9, ε = 10−4) [16],
convex combination with transfer of coefficients (µa = 500,
α = 0.95, β = 0.98) [6], normalized convex combination
with coefficients feedback (µa = 1.1, β = 0.9, ε = 10−4,
L = 50) [2], convexly constrained incremental combina-
tion (α = 0.98 and f(x) = 2(1 + e−x)−1 − 1) [1],
and incremental combination with the redesigned supervi-
sor (α = 0.97 and f(x) = 1.1x in (19)). The incremental
combination clearly outperforms the other structures and the
proposed supervisor considerably improves its performance
with relation to the previous convexly constrained approach.
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7. CONCLUSION

This work studied the transient performance of an incremen-
tal combination of LMS filters. Mean and mean-square mod-
els were developed and used to show that this combination
is not equivalent to a VSS algorithm and that it is, in fact, a
generalization of the DR-LMS. Supervisor constraints and the
optimal supervisor of the combination were then formulated.
Based on these results, an adaptive combiner was designed
and its performance was shown by simulations and analyses.
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