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ABSTRACT

In this work, we propose a novel application of the group de-

lay function – to identify the tonic pitch in Carnatic music

(one of the main sub genres of Indian classical music). Tonic

pitch is the reference note chosen by a performer in Carnatic

music. Automatic identification of the tonic pitch is essen-

tial in Carnatic music in order to perform data driven com-

putational melodic analysis. Group delay functions, which

have found numerous applications in speech processing are

employed in this task to process pitch histograms to empha-

size certain characteristics of Carnatic music that manifest in

a pitch histogram, to aid in accurate tonic identification. In

order to do so, the pitch histograms are first characterized as

the squared magnitude response of a set of resonators in par-

allel that do not have constant Q. Some interesting properties

of the group delay function of this magnitude response has

then been illustrated and exploited to identify the tonic pitch.

The proposed method is then tested by identifying tonic on a

large varied database with an accuracy of 90.70%.

Index Terms— Group Delay, Parallel Resonators, Pitch,

Histograms, Tonic

1. INTRODUCTION

The group delay function is defined as the negative derivative

of the phase spectrum of a given signal. Using group delay

functions, it has been shown that the phase spectrum (which

generally appears to be noisy owing to its being wrapped) can

be gainfully processed to extract useful information. Group

delay functions [1] have been extensively studied in the con-

text of speech processing, for both formant and pitch estima-

tion [2].

Group delay based features have also found applications

in speaker and speech recognition systems [3, 4, 5]. One of

the flavors of group delay processing – the minimum phase

group delay function derived from the magnitude spectrum

of a speech signal has been used for formant extraction [2].

∗This research was partly funded by the European Research Council un-

der the European Unions Seventh Framework Program, as part of the Comp-

Music project (ERC grant agreement 267583).

Similarities between magnitude spectrum and short term en-

ergy function has resulted in extensive work on segmentation

of continuous speech into syllable-like units using minimum

phase group delay functions [6]. Such processing methods

have also found applications in synthesis too [7]. Almost all

of these efforts, exploit the fact that the group delay response

for a cascade of resonators, behaves like the squared mag-

nitude response in the vicinity of the resonances, as detailed

in [8]. The fact that the summative nature of the group de-

lay spectrum offers better resolution and tracking of formants

when compared to the magnitude spectrum have been fully

explored in these works.

In this work, we propose another novel application of the

group delay function. We first show that histograms con-

structed on the pitch extracted for an item in Carnatic music,

owing to its unique features, can be characterized as the mag-

nitude response of a system of resonators in parallel. We then

illustrate some of the interesting properties of the minimum

phase group delay spectrum vis a vis the magnitude spectrum

for such a parallel setup. It is then shown that these properties

of the group delay spectrum can be used to emphasize certain

traits of the pitch histogram to identify tonic pitch.

To give perspective to the proposed approach, the task of

tonic identification in Indian music is first discussed in sec-

tion 2. Typical characteristics of pitch histograms are detailed

in this section. Owing to these typical characteristics of his-

tograms, in section 3, the pitch histogram is modeled as the

squared magnitude response of a set of resonators in parallel.

The advantages of processing such a model using group delay

functions is illustrated using synthetic examples. In section

4, the procedure for processing actual pitch histograms using

group delay function for tonic identification is discussed. In

section 5, the performance of the proposed technique is eval-

uated. We conclude in section 6.

2. TONIC IDENTIFICATION IN CARNATIC MUSIC

USING PITCH HISTOGRAMS

This work addresses the problem of tonic identification in In-

dian classical music. In Indian classical music, the tonic is

the reference pitch with respect to which all the other notes

EUSIPCO 2013 1569745887
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in a melody are defined. The tonic is decided by the lead

performer, usually lead vocal, depending upon his/her vocal

range. The lead performer generally uses a drone in the back-

ground, set to a particular frequency to establish the tonic.

All other instruments that are part of the ensemble, also tune

to the tonic or the reference pitch. This is in contrast to West-

ern classical music where a movable tonic is used but a fixed

frequency is employed as reference for tuning (usually A4

at 440Hz). There is no absolute fixed reference tuning fre-

quency in Indian classical with tonic of lead performer serv-

ing as the reference.

In [9], an attempt was made to identify tonic by process-

ing the drone using a multi pitch approach. Although the

drone contains the tonic information, the drone is generally in

the background and is seldom audible especially in yesteryear

Carnatic Music performances. In this paper, the drone is not

required to be present. The tonic is estimated by processing

the melodic histograms for each item in Carnatic Music.

Given that Carnatic music is heterophonic in nature i.e all

melodic sources render the same melody, in this work, only

mono pitch is extracted. Yin [10] is used to extract pitch from

a musical item. Figure 1 shows a typical histogram from

55Hz to 300Hz computed on the pitch extracted from a 3

minute excerpt of a Carnatic item, with a bin width of 1Hz.

55 100 150 200 250 300
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0.8
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Fig. 1: Pitch histogram of a 3 minute Carnatic music item. The red

stem is the tonic pitch value

To apply appropriate signal processing techniques, a large

number of pitch histograms of Carnatic music were studied.

The following observations were made:

• A peak is always seen at the tonic pitch value in the

histogram, though not necessarily the most prominent.

This is because, the drone (if present) is tuned to the

tonic pitch, and percussion and accompanying instru-

ments are also tuned to the tonic. Hence a peak is in-

variably observed at the tonic.

• The distribution of the pitch frequency appears to be

continuous in nature, even though a melody is based

on a scale of finite notes. Analyzing pitch histograms

in Carnatic music, it was shown in [11] that tuning in

Carnatic music tends towards the just intonation sys-

tem, though with a continuous distribution in pitches.

This apparent continuous distribution of pitches can be

attributed to the inflected nature of notes [12], which is

a fundamental characteristic of Carnatic music. There

seldom are clear peaks representing all the notes of the

melody at the expected theoretical positions and are

sometimes difficult to resolve. This property of Car-

natic music makes the peak picking process difficult.

• Another characteristic of Carnatic music is that notes

that constitute a melody have dissimilar inflections,

which manifest as peaks with varying bandwidth in

the pitch histogram. It was observed that the tonic as

well as the fifth (1.5 times tonic) are inflected less.

The peaks corresponding to these notes have narrower

bandwidths in the pitch histogram.

The above observations imply that in order to identify the

tonic pitch value, it is essential to resolve and pick peaks

from a pitch histogram that appears continuous. Given that

the tonic will invariably have a prominent peak, further anal-

ysis of peaks and their bandwidths might suffice to identify

tonic from pitch histograms. An effort in this direction was

attempted in [13] using Gaussian Mixture Models to charac-

terize histograms on a small dataset. The methods assumes

peaks at expected theoretical frequencies of notes which is

not necessarily the characteristic of Carnatic music [11]. In

this work, we propose a knowledge based signal processing

technique to process pitch histograms, in order to identify the

tonic pitch.

3. PITCH HISTOGRAMS AS A SQUARED

MAGNITUDE RESPONSE

In [6] it was shown that a positive function, short term energy
in that case, can be treated as a square magnitude response,
lending itself viable to group delay processing. In this work
pitch histogram, a positive function, is processed using the
group delay function. Similar to short term energy in [6], the
pitch histogram can be assumed to be the squared magnitude
|H(ejω)|2 response of a system H(ejω). At the same time,
unlike the magnitude spectrum in speech or short term en-
ergy, where all formants/peaks are generally thought of as re-
sponse constant Q filters from a cascade of resonators, some
of the peaks in the pitch histogram can be characterized by
both a large gain and a large bandwidth. This is primarily
because the gain corresponds to the frequency of occurrence
of a particular note in a given melody. To mimic the pitch
histogram and to achieve a particular peak-gain at resonance,
H(ejω) can be thought of as the squared magnitude response
of resonators connected in parallel with different gains, rather
than a cascade of resonators:

H(z) =

M∑

k=1

αk

(1− dkz−1)
(1)

with di = rie
(jωi), ri is the radius of the pole and ωi is the

angle of the pole in the Z plane.
To justify this model, we estimate the squared magnitude

response of two resonators in parallel given by Equation 2.

H(z) =
α1

(1− d1z−1)
+

α2

(1− d2z−1)
(2)
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with poles at d1 = 0.9e(jπ/4), d2 = 0.7e(jπ/3) and different

values of α1 and α2.

The angular frequency of the pole corresponds to the lo-

cation of the peak, while the radius of the pole relates to the

bandwidth of the pole. As the poles are close to each other,

it can be seen in column 1 of Figure 2, that the two peaks are

not resolved.
In this parallel setup, the width of the peak does not nec-

essarily imply a decrease in gain. A gain term is included in
Equation 2 to account for the height of the peak. A gain term
can be accounted in the parallel representation of resonances.
The Z-transform of the parallel connection as:

H(z) = (α1 + α2)
1− c1z

−1

(1− d1z−1)(1− d2z−1)
(3)

with c1 =
α2d1 + α1d2
α1 + α2

.

The first two columns of Figure 2 show the squared mag-

nitude spectrum and pole-zero plot respectively, for the sys-

tem given by Equation 3. In this system α1 is set to 1, while
α2 is varied. Since the model assumed is a parallel connec-

tion, zeroes are introduced as indicated in Equation 3. It can

be seen that as α2 increases, the zero moves towards the pole

of the other resonator thus annihilating the pole of the second

resonator.
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Fig. 2: Column 1 - Squared magnitude response, Column 2 - Pole

zero plot, Column 3 - Group delay plot, for a two pole system with

α1 = 1 and varying α2

Pitch histograms exhibit similar behavior, i.e., peaks at

various bin values can have varying heights and bandwidths.

This primarily depends on the frequency of the note and the

inflection that is associated with the note. Pitch histograms

can therefore be characterized as a set of resonators in paral-

lel with an appropriate choice of pole angles (ωi), gains (αi)

and pole radii (ri) respectively. Clearly, estimating position

of peaks and their bandwidths even for the synthetic spec-

trum of Figure 2 is nontrivial. Given that pitch histograms in

Carnatic music show similar traits, tonic identification from

pitch histograms of Carnatic music is difficult. We conjec-

ture that by processing such histograms using the group delay

function will aid in tonic identification. Having shown that

the histogram can be assumed to be the squared magnitude

response of the system in Equation 3, we will now illustrate

some of the properties of the group delay response of such a

setup. These properties are later exploited to identify the tonic

pitch.
The system in Equation 3 modeling a 2 peak histogram

can be generalized as [14]

H(z) = G

∏M−1
k=1 (1− ckz

−1)
∏M

k=1(1− dkz−1)
(4)

where M denotes the M peaks of a histogram and G is the
gain. The squared magnitude spectrum of this system evalu-
ated on the unit circle is given by:

|H(ejω)|2 = (G)2
∏M−1

k=1 (1 + |ck|
2 − 2Re{cke

−jω})
∏M

k=1(1 + |dk|2 − 2Re{dke−jω})
(5)

where Re implies the real component. For the system given
in Equation 4, the group delay function is defined as the nega-
tive derivative of the continuous phase function of the system
(arg[H(ejω)]), i.e

τ (ω) = −
d

dω
arg[H(e(jω))] (6)

The group delay function of the system given in Equation 4
will take the form [14]

τ (ω) =
M∑

k=1

|dk|
2 −Re{dke

−jω}

1 + |dk|2 − 2Re{dke−jω}

−

M−1∑

k=1

|ck|
2 −Re{cke

−jω}

1 + |ck|2 − 2Re{cke−jω}

(7)

For any pole with di = rie
jωi , as ω → ωi, group delay

function takes the form,

|di|
2 −Re{die

−jω}

1 + |di|2 − 2Re{die−jω}
≈

Ki

1 + |di|2 − 2Re{die−jω}
(8)

whereKi is some constant.

It can be seen from Equations 5, 7, and 8 that the group

delay behaves like the squared magnitude response of the res-

onators at the resonance frequencies [8]. The additive prop-

erty of the group delay is evident in the third column of Figure

2. While in the squared magnitude spectrum (column 1), the

peaks (pole angles) are not resolvable for small values of α2

and bandwidths (pole radius) are difficult to discern at high

values of α2, resolution of the peaks and bandwidth informa-

tion are better preserved in the group delay extracted (Column

3 of Figure 2) .

To further illustrate the characteristics of the group delay

function, the squared magnitude, pole-zero plot and group de-

lay response for three resonators in parallel are shown in Fig-

ure 3. α1 and α3 are fixed at α1 = α3 = 1, with d1 =
0.9e(jπ/4), d2 = 0.7e(jπ/3) and d3 = 0.9e(j4π/3). Square

magnitude and group delay response is shown for various val-

ues of α2. It is interesting to see in the group delay column,

the peak due to the pole with a larger pole radius of 0.9 at d3
dominates even at large values of α2. This ability of the group

delay function to accentuate peaks with narrow bandwidths is

indeed crucial for tonic identification.

3
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Fig. 3: Column 1 - Squared magnitude response, Column 2 - Pole

zero plot, Column 3 - Group delay plot, for a three pole system with

α1 = α3 = 1 and varying α2

4. GROUP DELAY PROCESSING OF HISTOGRAMS

In the previous section, the advantages of group delay pro-

cessing were illustrated through a synthetic example. In this

section, extraction of group delay from a natural pitch his-

togram is described. The procedure is similar to the algorithm

used for syllable segmentation in [6].

• In order to treat the pitch histogram as a squared mag-

nitude spectrum, append to the pitch histogram, a sym-

metric histogram generated by lateral inversion about

the Y-axis. If the original pitch histogram was made of

N bins, it is now extended to 2N-1 bins, with its sym-

metric counterpart from bin N+1 to 2N-1. Let the sym-

metric histogram be P [k].

• The causal portion of the inverse Fourier transform of

a power function has minimum phase properties [15].

In order to extract the minimum phase signal, compute

inverse discrete Fourier transform, IDFT (P [k]) and

let the resultant sequence be p[n].

• Extract the minimum phase signal by windowing the

causal portion of p[n] with a Hamming window of size

N .

• If c[n] is the windowed causal portion of p[n], the min-
imum phase group delay τ [k] is estimated as given in
Equation 9. ∆ denotes first difference and arg denotes
unwrapped phase.

τ [k] = −∆arg[DFT (c[n])] (9)

• τ [k] is henceforth referred to as the GD histogram.

Figure 4(b) shows the result of group delay processing

the pitch histogram in Figure 4(a). Observe that the his-

togram is not only smoothened but also the peaks are sharper.

Also here, peaks corresponding to that of the tonic and fifths

(peaks with narrow bandwidth), are emphasized in the GD

histogram. Methods to identify tonic are proposed in the

following section utilizing these very features of group delay

processing.
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Fig. 4: Pitch and Group Delay Histograms (a) Pitch histogram of a

3 minute Carnatic music item. (b) The GD histogram. Red stems

indicate the bin values of the tonic in the lower, middle and upper

octaves. Blue stems indicate the position of the fifths in the middle

and lower octaves

5. PERFORMANCE EVALUATION

In order to validate the proposed approach, tonic identifica-

tion was performed on a large varied set of 344 Carnatic mu-

sic excerpts. Excerpts are of 3 minute duration and pitch was

extracted using Yin with a hop size of 0.01s. The pitch his-

togram was then computed with bin centers from 30Hz to

800Hz, 1Hz apart. The ground truth was compiled by a pro-

fessional musician. The tonic pitch values of the excerpts in

the database were seen to range from 110Hz to 250Hz. Two
methodswere attempted to identify the tonic using histograms

and GD histograms. The tonic pitch as identified by these

methods is deemed accurate if it is within 2 Hz range of the

actual tonic pitch value.

1. Given that tonic pitch value is generally dominant in

Carnatic music, the bin value of the tallest peak in the

pitch histogram, between 110Hz to 250Hz is esti-

mated as the tonic pitch value (Figure 4).

2. This method attempts to exploit the fact that the tonic

pitch and the fifth in all of the octaves are less inflected

compared to the other notes of the melody. The follow-

ing procedure is used: peaks are first picked from the

Histograms/GD histogram denoted by H . Now a vec-

tor G of the same dimension as H is constructed such

that:

For i ∈ [30, 800], G(i) = H(i) if bin i corresponds to
a peak in the histogramH . G(i) = 0 for all remaining

bins values. Each non zero value of G, corresponding

to a peak in the histogram/GD histogram, is now treated

as a candidate tonic.

As mentioned in Section 2, in Carnatic music, for the

actual tonic pitch value, say at bin f , one can expect

peaks with narrow bandwidth at higher (2f ) and lower

(f/2) octave tonic pitch, and also at middle (3f/2) and
lower (3f/4) octave fifths. This can be seen in Figure

4, where red stems indicate tonic and blue stems the

fifths. To utilize this feature, for every candidate peak

i, T is defined such that T (i) =
∑δ

k=−δ G(i/2 + k) +

4
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G(3i/4+ k) +G(i) +G(3i/2+ k) +G(2i+ k), with
δ = 3. For the correct candidate i.e i = f , T (f) will
be maximum for the GD histogram, given that each of

the peaks that constitute T will be accentuated by the

group delay function (Figure 4, b).

Table 1: Results comparing performance of Histograms and GD his-

tograms on employing methods 1 and 2 to identify tonic pitch value

Method Histogram GD Histogram

Tallest Peak 72.67% 83.85%
Template Matching 84.01% 90.70%

It can be seen in Table 1 method 1, that the tonic pitch in-

deed features prominently in the music, being the tallest peak

of the constructed histogram in around 73% of the cases. Due

to further accentuation by the group delay function, the accu-

racy of method 1 improves to around 84% on using the GD

histogram. In method 2, the ability of the group delay func-

tion to resolve peaks is first used to generate candidate tonic

values that constitute G. The fact that the peaks correspond-

ing to the fifth along with the tonic pitch is also emphasized is

then utilized to achieve an accuracy of around 91% on using

the GD histograms.

6. CONCLUSION

There have beenmany efforts to show the advantages of group

delay processing, especially for extracting formants by as-

suming the system to be a cascade of resonators. In this

work, a parallel setup of resonators has been used to char-

acterize pitch histograms for the purpose of tonic identifica-

tion in Carnatic music. By assuming pitch histograms to be

squared magnitude response of resonators in parallel, charac-

teristics of the group delay functions of such a setup, that can

be favorably used to identify tonic has been highlighted. First,

the ability of group delay function to resolve peaks and retain

pole radii information for a set of parallel resonators has been

illustrated. This property of group delay functions are shown

to be crucial for emphasizing certain characteristic traits of

Carnatic music that enable easy identification of tonic. The

proposed approach was validated by testing on a large varied

dataset.
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