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ABSTRACT

The Generalized Complex time distributions have been re-

cently introduced as a way for reducing the auto-terms of any

bilinear time-frequency representation that appear when deal-

ing with non-linear time-frequency structures. This concept

requires the definition of signal at complex times and this

abstract operation is achieved by the analytical continuation

principle. In the current version, this principle is efficient only

for narrow-band signals, restricting also the application of the

complex time distribution to more complicate signals. The

purpose of this paper is to propose a method to overcome the

limitations of the analytical continuation in the case of sig-

nals with a spread time-frequency variation. This method is

based on the compression of the signals spectrum to a band-

width that ensures the efficiency of the analytical continuation

technique. Then, the application of generalized complex time

distribution will allow an accurate estimation of the instanta-

neous frequency law. The spectrum expanding will bring this

estimation to the correct time-frequency location.

Index Terms— Time-frequency analysis, Signal repre-

sentation, Analytic continuation

1. INTRODUCTION

Time-frequency representations are very helpful to character-

ize the richness of the information contained in non-stationary

signals. It can help to monitor the appearance of short tran-

sient electrical signals and the beat of an heart for example.

The subject has already been well covered with the Wigner-

Ville representation, spectrogram, wavelet transform, etc...

However, it only helps us to characterize the frequency con-

tent of a signal, with some limitations like inner interferences,

cross-terms, artefacts, trade-off between time and frequency

resolutions, etc...

Recently, complex time distribution concept has been intro-

duced in [1] as a way to produce high concentrated distribu-

tions along the different phase derivatives of a signal. The

main idea is to use the high order moments of the signals cal-

culated for complex-time lags. It has also been shown that it

was possible to deal with multi-component signals [2]. This

technique has however some drawbacks as it involves the cal-

culation of signal samples at complex coordinates through an-

alytic continuation [3]. This estimation leads to poor repre-

sentations as it can produce a divergence. Numerical exam-

ple proves the efficiency of the modified analytical continu-

ation technique extending also the capacity of the complex

time distribution to deal with time-frequency structures with

larger bandwidth.

In this paper, we show that it is possible to overcome some

of the limitations introduced by the analytical continuation.

This is achieved by a contraction in the frequency domain of

the signal’s spectrum.

The paper is organized as follows. In Section 2, the complex

time distribution concept is presented. Section 3 describes

the limitations of this technique due to the analytical continu-

ation. A new technique is then introduced in Section 4 which

permits to overcome some of the limitations. The different

algorithms are then compared in Section 5. Section 6 gives a

short conclusion and some perspectives for future works.

2. THE COMPLEX TIME DISTRIBUTION CONCEPT

The complex time distribution concept has been introduced a

few years ago as a way to provide distributions that are con-

centrated along the K-th derivative of the phase for regular

signals [1]. Let consider the signal defined as:

s(t) = AejΦ(t) (1)

Assuming an analytical signal, and using the Taylor’s series

expansion of the phase, we can write:

s (t+ τ) = Aej
∑

k
Φ(k)(t) τk

k! (2)

Phase integration in the complex plane using the theory of

Cauchy’s integral theorem [4] allows the focusing on a par-

ticular phase derivative:

Φ(K)(t) =
K!

2πτK

∫ 2π

0

Φ
(

t+ τejθ
)

e−jKθdθ (3)

We now consider the discrete form of the equation for the

N-th roots of unity which is used in numerical computation.

Using the properties of the roots of unity, ωN,p = ej2πp/N
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and the variable change τ → K

√

τ K!
N the previous expression

becomes:

N−1
∑

p=0

Φ

(

t+ ωN,p
K

√

τ
K!

N

)

ωN−K
N,p = Φ(K)(t)τ +Q(t, τ)

(4)

whereQ is the spread functionwhich contains only the deriva-

tives of order Nk+K, defined as:

Q(t, τ) = N

∞
∑

p=1

Φ(Np+K)(t)
τ

Np

K
+1

(Np+K)!

(

K!

N

)

Np

K
+1

(5)

We can now define the generalized complex-time moment

(GCM):

GCMK
N [s](t, τ) =

N−1
∏

p=0

sω
N−K
N,p

(

t+ ωN,p
K

√

K!

N
τ

)

= ejΦ(K)(t)τ+jQ(t,τ) (6)

The Fourier transform of the GCM produces the generalized

complex time distribution:

GCDK
N [s](t, ω) = TFτ [GCMK

N [s](t, τ)]

= δ(ω − Φ(K)(t)) ∗
ω
TFτ [Ae

jQ(t,τ)] (7)

As stated by this definition, the K-th order distribution of the

signal, obtained for N complex-lags, highly concentrates the

energy around the Kth-order derivate of the phase law. This

concentration is optimal if the Φ s derivates of orders greater

than N+K are 0. Observing Equation 5, it can be noticed that
the first term appearing in the spreading function is the phase

derivative of order K+N, the second one is of ordre K+2N,...

Thus the parameter N highly affects the spreading function.

We can conclude that a high value ofN reduces interferences,

since Q is reduced and distribution concentration will be less

sensitive to higher order phase derivatives. This theory has

been well developed in [1].

However, the computation of GCM implies the calculation of

signal samples at complex coordinates. The next section will

be dedicated to the study of the limitations introduced by this

abstract notion.

3. LIMITATIONS OF CLASSICAL ANALYTICAL

CONTINUATION

The analytical continuation of a signal s(t) is performed as
defined in [3].

s(t+ jm) =

∫

∞

−∞

S(f)e−2πmfej2πftdf (8)

where S(f) is the Fourier transform of the signal s(t). It in-
volves the multiplication of the spectrum by the exponential
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Fig. 1. This Figure represents a spectrum S(f) multiplied by
an exponential e−2πmf for different value of m: (a) m = 0,
(b)m = 0.02, (c)m = 0.05.

e−2πmf which has different effects on the spectrum. Those

are shown in Figure 1 for different values of m. When the

frequencies are positives, they are strongly attenuated due to

the fast decreasing exponential. In the meantime, negative

frequencies are strongly amplified, which can lead to a diver-

gence (Figure 1 (c )). It is really important to note that m and

the bandwidth of the signal have a strong impact on the ana-

lytic continuation. The bandwidth is directly attacked by the

exponential. As form, a strong value considerably distorts the

spectrum. As a matter of consequence, it would be better to

use roots of unity weighted by 1/N that are the closest to the

real axis in order to reduce the possible distortion during the

computation.

In order to illustrate using an example, let consider two sig-

nals defined as:

s1(t) = ej(6 cos(πt)+ 4
3 cos(3πt)+ 4

3 cos(5πt)) (9)

s2(t) = ej(18 cos(πt)+4 cos(12πt)+4 cos(40πt)) (10)

Figure 2 shows the theoretical instanteneous frequency laws

for s1 and s2, as well as the results of the complex time distri-
bution using N = 6 and K = 1. We notice that if the DGTC

gives good results for s1 we can no longer estimate the first
phase derivative for s2. This is due to the computation of the
analytical continuation and the large bandwidth of s2.

4. NEWMETHOD

In this section, a way for reducing the effect of analytical con-

tinuation is introduced. It consists in modifying the frequency

support of the analyzed signal, s, in order to reduce the atten-

uation of the analytical continuation term.

Let consider a signal B(t) defined as:

B(t) = s (αt) (11)
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Fig. 2. This Figure represents the theoretical instantenous fre-

quency laws for (a) s1(t) and (b) s2(t) and the classical GCD
associated for (c) s1(t) and (d) s2(t).

with α > 1 a dilatation coefficient and s a signal defined as
Equation 1. The dilatation of the temporal signal leads in the

frequency domain to a contraction of the bandwidth. This is

actually the concept of the time-scale representation that we

use at this point [5].

Considering the complex-time moment of B, we have:

GCMK
N [B](t, τ) =

N−1
∏

p=0

sω
N−K
N,p

(

αt+ αωN,p
K

√

K!

N
τ

)

(12)

We can clearly notice that the main impact directly concerns

the analytical continuation. We then focus on its calcula-

tion. According to the Taylor serie expansion (Equation 2),

we have:

s (αt+ jαm) =
∞
∑

k=0

s(k) (αt)

k!
(jαm)k (13)

Knowing the following Fourier ’s formula:

s(k)(t) =

∫

∞

−∞

(j2πf)
k
S(f)ej2πftdf (14)

we then deduce:

s(k) (αt) =

∫

∞

−∞

(j2πf)kS(f)ej2παftdf

Considering the variable change f ← αf , we obtain:

s(k) (αt) = |a|k
∫

∞

−∞

(

j2π
f

α

)k

S

(

f

α

)

ej2πft
df

α
(15)

Taking into account Equations 13 and 15, we deduce:

s (αt+ jαm) =
1

α

∫

∞

−∞

S

(

f

α

)

∞
∑

k=0

(−2πmf)k

k!
ej2πftdf

(16)
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Fig. 3. (a) and (b) represent the theoretical instantaneous fre-

quency laws of s2 and its dilated version. (c) and (d) are the
respective GCD.

Finally, we obtain the contracted analytical continuation:

s (αt+ jαm) =
1

α

∫

∞

−∞

S

(

f

α

)

e−2πmfej2πftdf (17)

We can see that this leads to a contraction of the spectrum, and

as a matter of fact, it will be less affected by the attenuation

term e−2πmf . We defined sα as the signal s whose frequency

support is contracted by the dilatation coefficient alpha, ie

Sα(f) = S
(

f
α

)

. We obtain:

s (αt+ jαm) =
1

α
sα(t+ jm) (18)

As we can notice, the two signals are related. The GCM then

becomes:

GCMK
N [B](t, τ) =

N−1
∏

p=0

(

1

α
sα

(

t+ ωN,p
K

√

K!

N
τ

))ωN−K

N,p

(19)

=

(

1

α

)

∑N−1
p=0 ωN−K

N,p

GCMK
N [sα](t, τ) (20)

Two scenario then need to be studied:

• When N = K(moduloN), ie when the number of

roots of unity is equal to the order of phase derivative.

Then we have:

GCMK
N [B](t, τ) =

1

αN
GCMK

N [sα](t, τ) (21)

• Otherwise:

GCMK
N [B](t, τ) = GCMK

N [sα](t, τ) (22)

3



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

−0.5 0 0.5
−800

−600

−400

−200

0

200

400

600

800

time

a
m

p
lit

u
d
e

Fig. 4. The blue curve represents the theoretical instanteneous

frequency law of s2 meanwhile the red cruces represent its

contracted version

In both cases, we can conclude that the GCD gives the same

results with a different intensity when the factor 1
αN appears.

Equation 22 shows that it is possible to extract the K-th phase

derivative order distribution of a signal by using its dilated

version. We then need to expand the distribution to obtain the

real distribution for signal s.

Next Section is then dedicated to the study of an example.

5. RESULTS

In this section, we apply the GCD algorithm to s2(t) and
s3(t) = s2(t/α) with α = 4 for K = 1 using 6 roots of

unity. Figure 3 represents the different theoretical instanta-

neous frequency laws of the two signals, as the results of the

GCD implementations. It is easy to note that the dilatation of

the temporal support leads to a contraction of the bandwidth

of s3. The GCD fails to represent s2, this is due to its large
bandwidth and the analytic prolongation. Meanwhile, the di-

lated version of s2 shows very good results as its bandwidth
has been reduced, the continuation remains possible.

The frequency law obtained for s3 is as stated by Equation 22
a contraction of the one of s2, to obtain the last one,it is nec-
essary to dilate the frequency law obtained with the dilatation

coefficient α.
Figure 4 shows the comparaison between the theoretical in-

tantaneous frequency law of s2 and the dilated frequency law
of s3. We can notice that they match almost perfectly.Figure

5 shows the DGTC of s3 after dilatation.
We have seen that it was possible to overcome one of the lim-

itation of the analytic continuation for the GCD method using

a dilation coefficient.
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Fig. 5. This Figure represents the GCD of s3 after dilatation.
It is equal to the one of s2

6. CONCLUSION

This paper proposes a new analytical continuation technique

that will allow the generalized complex time distribution to

deal with time-frequency structures having larger frequency

variation. This technique is based on the compression of the

signals bandwidth and, then, the application of the general-

ized complex distribution. This transformation allows accu-

rately estimating of the IFL. In the future, works will propose

an adaptive approach for the selection of the optimal scale

parameter with respect of the bandwidth variation of the ana-

lyzed signal. Another future work direction will focus on the

application of this analytical continuation technique for tran-

sient signals. The combination of the time-scale theory and

the complex-time distribution will be also generalized provid-

ing a new way to analyze high speed time-frequency varying

signals.
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