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ABSTRACT 

 

One of the most successful types of brain computer 

interfaces (BCI) is based on the P300 evoked potential 

(EP) elicited by oddball type of paradigms. Given a 

particular paradigm the main challenge is to obtain an 

efficient and robust classification. This paper proposes the 

use of Random Forest (RF), a tree based ensemble learning 

method providing state-of-the-art generalization 

performance, for P300 BCI classification. The performance 

of the proposed method is compared to both the most 

commonly used classifiers for this problem: the support 

vector machine (SVM), and the step-wise linear 

discriminant analysis (SWLDA); and to two state-of-the-art 

methods: the multiple convolutional neural networks 

(MCNN) and the ensemble support vector machine 

(ESVM). The proposed method has been evaluated on two 

public available BCI datasets: the BCI competition dataset 

II for healthy subjects and the image driven paradigm 

dataset for disabled subjects. The proposed method 

demonstrated a significant improvement in classification 

accuracy on both datasets. 

 

Index Terms: — Brain Computer Interfaces (BCIs), 

evoked potential (EP), Random Forest (RF). 

 

1. INTRODUCTION 

 

    A brain computer interface (BCI) allows a user to 

interact with a computer directly through the signals 

generated by the brain without relying on physical action. 

This is done by utilizing certain electrophysiological 

activities that reflect the function of the brain [1]. BCIs can 

be divided into two classes: endogenous, which are based 

solely on mental tasks; and exogenous, which are based on 

evoked potentials (EP). The usage of EP for BCIs is being 

extensively researched as they require a minimum of 

subject training and can be based on single/few EEG 

channels. One of the most explored EP for BCIs is the so-

called P300, which is a positive EP that is elicited 

approximately 300ms after an attended external stimulus. 

As an example, one of the most popular BCI system based 

on the P300 is the P300 speller proposed by Farwell and 

Donchin [2] [3], in which the P300 is elicited by an oddball 

paradigm. The P300 speller system detects which character 

(target) in a matrix of characters the user is attending, 

display the detection result on the screen, and thereby 

enabling the user to communicate. 

     Previous works on P300 BCIs have utilized various 

binary classifiers for P300 classification.  Lenhardt [4] and 

Bostanov [5] have utilized the linear discriminant analysis 

(LDA) method to maximize the separation between classes. 

Based on the LDA, a Bayesian LDA classifier was further 

proposed in [16] and has been used in the P300 speller 

paradigm [6]. Krusienski et. al. proposed the SWLDA and 

demonstrated superior performance compared to the 

previous mentioned methods [20]. Also SVM have shown 

satisfactory results in P300 BCI systems using channel 

selection method [7] [8], compared to classical neural 

networks classifiers [9]. From the literature it appears that 

the SVM and the SWLDA have been the most popular 

methods for the classification of P300 BCI.  

    In recent years ensemble methods have shown favorable 

performance over more classical methods in many practical 

machine learning problems. For instance recently the 

ensemble methods i.e. ESVM [10] and SWLDA [11] have 

shown to be better than their classical versions in [12] and 

[13] for P300 BCI. One of the most successful ensemble 

methods is the Random Forest (RF) [14]; and it has 

demonstrated generalization errors that compare favorable 

to the best statistical and machine learning methods, and 

has been used for many different applications e.g. [21] [22] 

and [23]. So far it has never been used for the P300-based 

BCI problem. Therefore, with the objective to improve the 

classification performance, we in this work propose the use 

of the RF classifier for P300-based BCIs. In addition to the 

excellent classification performance the RF classifiers have 

a relatively low computational complexity in the training 

and in the classification, which is a desirable characteristic 

in practical and real-time BCI-systems.  

 

2. SIGNAL PROCESSING SCHEME 

    The signal processing scheme of the BCI system has a 

simple feed-forward structure comprising the following 4 

steps: 

1. Preprocessing. The raw EEG signals from all the 

channels were filtered using a third order Butterworth 

band pass filter with pass band between 0.1 and 10 Hz. 

2. Windsorizing. To remove outliers originating from 

eye-blinks, muscle activity, motion artifacts etc. the 
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signal amplitude is limited by the 10 and 90% 

percentile; as mentioned in [16]. 

3. Ensemble Averaging. The feature vector for the 

classifier is the time-averaging of 1 sec. time-segments 

over a set of stimuli (this is an estimate of the EP). For 

the P300 speller for instance, each trial comprises 6 

column and 6 row intensifications, and each trial is 

repeated 15 times. The feature vector is thus the time-

aligned averaging over 2xN time segments, where N is 

the number of epochs used in the averaging. 

4. Classification. The feature vector is feed to the RF 

classifier. 

    For the purpose of a comparative performance 

assessment the RF classifier has been compared to four 

other classifiers: the SVM, the SWLDA, the MCCN-1 and 

the ESVM. The signal processing step 1 through 3 are 

identical across all classifiers. The RF and the application 

to the P300 BCI classification problem are explained in the 

following section.  

3. THE RANDOM FOREST CLASSIFIER 

 

    In this section, we propose a RF classifier for the 

classification of P300 signals. From the literature, we have 

found that there is no classical decision tree approach to 

increase both classification and generalization accuracy. 

For this purpose the RF was introduced by Tin Ho [15]. 

    RF classifiers relies on an ensemble of single tree 

classifiers where each tree is trained on a random set of 

vectors from the training set, each such set is denoted a 

bootstrap. In the bootstrap methodology used in this work 

each bootstrap is generated as a random selection (with 

replacement) from the complete training set. 

    Consider a RF classifier of L trees. The �th 

tree	ℎ�(�	, 	�), of the input vector	�, is based on a random 

vector,		�, generated from the training set. This vector is 

independent of past vectors		�, 	�…… . , 	���, but sampled 

from the same distribution of input data. In the construction 

of the tree, at each node m variables are selected at random 

from the random vector		� . The RF method here uses the 

Gini criterion to select the best splitting vector to split the 

node into child nodes. The Gini criterion is defined as 

follows: 

���� = ∑ ��(1 − ��)�,� 										                  (1) 
where, ��  is the  proportions of data samples from the two 

classes. For an ensemble of tree classifiers, 

�ℎ�(�), ℎ�(�)…	 , ℎ�(�)�, the margin function is given as: 

��(�,  ) = 	!�"(ℎ�(#) =  )� −	max
'()

(	!�"(ℎ�(#) = *)�) 

                                                                                          (2)  

where the expectation is taken over the training set (�,  ), 
and " is the indicator function. The generalization error 

using the above mentioned margin function is given as: 

+!∗ =	+�,)(��(�,  ) < 0)                  (3) 

where +�,) indicates the probability over the (�,  )-space 

of input vectors X and class labels Y. Breiman [14] shows 

that the generalization error is asymptotically upper 

bounded by: 

                                +!∗ 	≤ 		 0̅
2��345

34                               (4)       

where 0̅ is the mean correlation between classifiers and 6 

is the strength of the ensemble. Thus the generalization 

error depends upon two important factors: - the correlation 

between the random trees and the strength of the individual 

classifiers present in the forest. Thus, by increasing number 

of trees the generalization error converges to a limit, and 

therefor over-fitting is not a problem. 

 
3.1.   P300 Classification using Random Forest 

 

    A RF model, dedicated for P300 classification, is used to 

learn the mapping between features of averaged segments 

of input data and their corresponding classes, i.e. P300 and 

non-P300. The RF training model is constructed as 

follows: 

• Associate each P300/non-P300 averaged feature vector 

�� to their corresponding class label	7� ∈ [0,1].  
• Join all the feature vectors together to form the data 

matrix � = [��, ��, ⋯ , �<] and the corresponding 

class label vector	 = [7� , 7�, ⋯ , 7<]. 
• Construct L independent bootstraps,	(��,  �), (��,  �), 

	⋯ , (��,  �), by random selection (with replacement) 

of N samples from the data matrix and the 

corresponding label vector.  

• Construct the set of ‘�’ random trees	�ℎ�, ℎ�, … . , ℎ�	� . 
Each tree ℎ�	 is trained based on the bootstrap 

sample	(�� ,  �).  
• At each node, � variables are selected randomly out 

of ‘M’ input variables i.e. m << M. Then GINI 

criterion was employed to select the best split among 

these m variables. 

The classification of RF is based on a weighting (majority 

voting) of the = trees. This is illustrated in Fig.1. 

 

                  
         Figure.1: Architecture of the random forest classifier 
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4. DATASETS 

 

We have tested the proposed technique on two public 

available BCI datasets: the BCI competition 2003 II of 

normal subjects [16] and a dataset based on an image 

driven paradigm recorded from disabled subjects provided 

by the EPFL BCI group [17]. 

 

4.1. Dataset I 

 

    As the first dataset we used the BCI competition 2003 

dataset II provided by the Wadsworth center for our 

experiment. This competition has two datasets for Subject 

A and Subject B. In these datasets the users were presented 

with a 6x6 matrix of characters on the screen. The 

recordings consist of 64 EEG channels and the user’s task 

was to attend one character prescribed by the investigator. 

For each character, the stimulus was as follows: the matrix 

was displayed for a 2.5 s period and during this time each 

character had the same intensity. Subsequently each row 

and column in the matrix was randomly intensified for 

100ms. After intensification of a row or column, the matrix 

remains blank for 75ms. Row or column intensifications 

were block randomized in blocks of 12. For each character 

12 intensifications were repeated 15 times. Each sequence 

of 15 sets of intensifications was followed by a 2.5 s period 

during which the matrix was blank. The training database 

contains 85 characters, while the test database contains 100 

characters. For the training, the database consists of 

85×2×15= 2550 samples of targets and 85×10×15= 12750 

samples of non-targets; and for testing the database 

consists of 100× 2 ×15= 3000 samples of targets and 

100× 10 ×15 = 15000 samples of non-targets.  

 

4.2. Dataset II 

 

    This dataset was recorded from four disabled subjects. 

The subjects looked at computer screen images on which 

one out of six were shown; the images showed a telephone, 

a television, a lamp, a door, a window and a radio. These 

images were flashed in a random order and the subjects 

were asked to attend a target image and count the number 

of times the target was flashed. As a target image is a rare 

event (with probability one out of six) it induces a P300 

response. Each image was flashed for 100 ms and there 

was a pause for 300 ms between the images. The images 

were flashed in blocks of six images, where each block 

consisted of random order of six images. The dataset 

contains data recorded from four sessions from each 

subject, and the EEG was recorded from 32 channels. Each 

session comprises six runs and in each run there were 23 

iterations. The total number of targets is 6× 1 × 23= 138, 

and the total number of non-targets is 6× 5 × 23= 690. 

 

 For each dataset, balanced training data i.e. equal no. of 

targets and randomly selected non-targets were used for 

each character and image. 

 

 

5. PERFORMANCE MEASURE 

 

    To evaluate the performance and compare the different 

methods, we have estimated the classification accuracy. 

The feature vector for the classifier is the estimated evoked 

response, obtained by averaging the EEG time-

synchronously to the stimuli. In principle, as the number of 

averages is increased, the mean response converge towards 

the underlying evoked response, and therefore the 

classification accuracy will increase. Thus, the increase in 

classification accuracy comes at the expense of lower 

bandwidth of the BCI. To take this aspect in to 

consideration we have used the information transfer rate 

(ITR) as the performance metric as also used in e.g. [18] 

and [19]. The ITR is defined as:  

 

60 1
log ( ) log (1 )log ( )2 2 2

1

p
ITR n p p p

T n

− 
= + + − 

− 
            (5) 

where ‘T’ is the time in seconds required to spell one 

character, ‘n’ is the number of different symbols a user can 

select and ‘p’ is the probability of correctness (i.e. 

classification accuracy). The ITR is measured in 

bits/minutes.  

 

    6. RESULTS AND DISCUSSION 

 

    For both dataset I and II the RF classifier was trained on 

the individual subjects. The RF classifier contained � = 10 

trees, and the splitting function in each node of the trees 

was based on � = 15 variables. The classification 

accuracy of the RF classifier for 5, 10 and 15 epoch-

averages and for all the subjects in dataset I and II are 

shown in Table 1 and Table 2 respectively. It is observed 

that a very similar performance is obtained across all the 

subjects, and that there is a consistent increase in the 

performance as the number of epoch-averages increases. 

   To assess the classification performance of the RF and to 

compare it against ESVM, MCCN-1, SVM, and the 

SWLDA classifiers we have estimated the classification 

accuracy as a function of the number of epoch-averages 

(from 1 to 15 averages). The results for dataset I are shown 

in Fig. 2. For all classifiers there was, as expected, a 

monotonically increase in classification accuracy 

performance with increasing number of epoch- averages. 

From Fig. 2 it is observed that the RF classifier has 

superior performance compared to the competing 

classifiers in most of the studied examples. 

    To compare the performance in a more rigorous 

statistical analysis, the standard deviation for the RF 

classifiers was estimated for 5, 10, and 15 epoch averages. 

This was obtained by pooling the training and test data, and 
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randomly selecting new training and testing datasets. The 

standard deviation is shown in Fig. 2 as error bars around 

the mean curve for the RF classifier. As a measure of 

significance we have calculated how much of the 

probability mass of the RF classifier that is above the mean 

value of the competing classifiers (assuming the 

classification accuracy follows a Gaussian distribution). 

The results are summarized in Table 3 for 5, 10 and 15 

epoch averages. Based on this analysis we conclude that 

the RF classifier has a performance that is significant better 

than both the ESVM and the MCNN-1. 

    The trade-off between classification accuracy and 

channel capacity of the BCI is assessed using the ITR 

measure. The result of this analysis is shown in Fig. 3. It is 

observed that the RF has a superior performance over all 

competing classifiers from 1 to 10 epoch averages. Above 

10 the performance of the RF is very similar to the ESVM 

and MCNN classifiers. 

 

Table 1: Classification performance in % of correctly 

recognized characters for two normal subject’s w.r.t 

increasing no. of epochs. The values in the brackets show 

standard deviations. 

 

Dataset I No .of epochs 

5 10 15 

Subject A 73.80   (3.2)  89.0  (1.3) 97.30  (1.6) 

Subject B 80.32   (1.2)  92.3  (1.5) 98.41  (0.8) 

Average 77.06   (2.2) 90.65 (1.4) 97.85 (1.2) 

 

Table 2: Classification performance in % of correctly 

recognized images for the four disable subjects w.r.t 

increasing number of sequences. 

 

Dataset II No .of epochs 

5 10 15 

Subject 1 74.0 85.34 94.13 

Subject 2 78.32 89.56 97.72 

Subject 3 69.51 80.23 95.28 

Subject 4 75.23 88.12 98.43 

Average 74.26 85.80 96.39 

 

Table 3: Probability mass values of RF w.r.t state-of-art 

classifiers for dataset I on different number of epochs.  

 

Methods No .of epochs 

5 10 15 

RF vs. ESVM 0.947 0.995 0.87 

RF vs. MCNN-1 0.9998 0.995 0.975 
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Figure 2: Classifiers performance verses the number of 

epochs for dataset I.  
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Figure 3: ITR for ESVM, MCCN-1, SWLDA, SVM, and 

RF number of epochs.      

 

7. CONCLUSION 

This paper has proposed a signal processing scheme, 

utilizing the random forest (RF) classifier for P300-based 

brain computer interfaces (BCI). The performance of the 

methodology has been evaluated over two types of P300-

based BCIs using public available data sets. By means of a 

comparative study, the classification accuracies and the 

information transfer rates [bits/minutes] over number of 

epochs was evaluated. The study demonstrated that for 

these datasets the RF classifier had significantly better 

performance than state-of-the-art methods for most of the 

studied examples (i.e. 1 to 10 epochs). Furthermore we 

found that the overall classification accuracy of the RF 

classifier at 15 epoch-averages outperformed the state-of-

the-art methods based on ESVM and MCNN. In addition to 

the excellent classification performance the RF classifier 

also have a relatively low computational complexity in the 

training and in the classification, and this is a desirable 

characteristic for practical and real-time BCI-systems. 
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