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Abstract—Spatial Spectrum estimation is a key technique used
in a wide variety of problems arising in signal processing and
communication, particularly those employing multiple antennas.
In many scenarios such as direction finding using antenna arrays,
it is crucial to estimate which directions in space contribute
to active sources (indicated by a non zero power). It has been
recently shown that if the sources from different directions are
statistically uncorrelated, it is possible to identify as many as
O(M2) active sources using only M physical antennas. A sparse
representation for the spatial spectrum was further exploited to
reconstruct the spectrum using convex optimization techniques.
In this paper, we consider the situation when there is non zero
cross correlation between the sources impinging from different
directions. We investigate if, fundamentally, it still possible to
identify more sources than the number of physical sensors and
what role the cross correlation terms play. Recovery guarantees
are developed to ensure uniqueness of the sparse representation
for spectrum sensing. They are further extended to establish con-
ditions under which a greedy heuristic, namely the Orthogonal
Matching Pursuit algorithm will successfully recover the sparse
spectrum. It is shown that in both cases, it is possible to recover
support of larger size provided the correlation terms are small
compared to the power of the impinging signals.
Keywords — Sparse Spectrum Estimation, Correlated Sources,
Khatri-Rao Product, Kruskal Rank Orthogonal Matching Pur-
suit. 1

I. INTRODUCTION

The problem of Spectrum Sensing arises frequently in signal
processing and wireless communication. It lies at the core of
applications such as cognitive radio [6], direction of arrival
(DOA) estimation [7] etc. The spectrum can be either temporal
or spatial depending on the application of interest. Instead of
reconstructing the signal itself, the goal here is to recover the
power spectrum which carries valuable information about the
active frequency bands (as in cognitive radio) or the direc-
tions of arrival of incoming signals (as in array processing).
Hence these methods are largely based on computing the
autocorrelation function of the measurements and estimating
the parameters of interest from this function. Using the fact
that one only needs to sample the autocorrelation function at
the Nyquist rate (rather than the signal itself), it has been
shown that it is possible to sample the signal at a sub Nyquist
rate [11], [12], [16], [18]. In the context of wideband spectrum
sensing, this can lead to considerable reduction in the power
consumed by A/D converters. For direction finding in array
processing [10], this can significantly reduce the number of
physical sensors required to estimate the directional sources.

The spectrum sensing problem naturally has a sparse repre-
sentation in an appropriate basis. The sparse model is obtained
by dividing the total spectrum (temporal or spatial) into a large
number of candidate bins and arguing that only a few of them
are active. The active bins can correspond to the occupied
frequency bands/active users in the context of cognitive radio,
or they can indicate the directions from which sources are
impinging in an antenna array [9]. Given an array of M
sensors and D narrow band far-field sources with directions of

1Work supported in parts by the ONR grant N00014-11-1-0676, and the
California Institute of Technology.

arrival given by {θ1, θ2, · · · , θD}, the received signals at the
M antennas are given by the following sparse approximation:

y[n] ≈ Ax[n] (1)

where A ∈ CM×Ng is a fat matrix (Ng � M ) where each
column of A represents a steering vector corresponding to one
among Ng candidate directions between 0◦ and 180◦ of ele-
vation angle. The vector x[n] is a sparse vector for each time
sample n, containing exactly D non zero elements. Denote S
as the set of indices of non zero elements of x. Then recovering
S is essentially the same as recovering the directions of arrival.
The DOA estimation problem is essentially a spatial spectrum
estimation problem where we want to know which directions
correspond to non zero power. Since the support S contain the
desired information, the spatial spectrum sensing problem is
equivalent to that of sparse support recovery.

The above sparse formulation allows powerful convex op-
timization tools to be applied to recover the DOAs. There are
several advantages of the sparse formulation over traditional
subspace based methods like MUSIC [1], such as i) Since
the number of active sources is a by product of the recovery
algorithm, it need not be known or estimated apriori ii) Fewer
number of time snapshots are required (in principle, even one
time snapshot can be used [5], [9]). Recently, algorithms which
are a hybrid of subspace and sparse formulation [13] have been
proposed.

A common feature of most existing algorithms for sparse
support recovery is that the number of sources that can be
resolved obeys D = O(M) [2], [9], [13], [19]. In [14] we
showed that this can be improved by orders of magnitude if
the source signals from two different directions are statistically
uncorrelated. This means,

E(xix
∗
j ) = 0, i 6= j, i, j ∈ S (2)

In particular, for uncorrelated sources, it has been shown
that D = O(M2) sources can be identified using only M
sensors. We proposed a sparse formulation for this problem
and showed that two of the recently reported array geometries
called the nested [10] and coprime arrays [11] can achieve
this number. We also performed statistical analysis [15] of
the sparse recovery algorithm in presence of finite snapshots.
However, all our results so far have only considered the case
when the sources are uncorrelated.

In this paper, we will establish identifiability conditions for
the case where the sources can have non zero cross correlation.
A dynamic array approach to correlated sources has been
recently proposed [17]. However, in this paper, our goal is
to establish a set of fundamental conditions on how many pa-
rameters can be resolved in the correlated scenario, irrespective
of any specific algorithm. The argument is based on finding
conditions for uniqueness of the sparse representation which
should fundamentally hold no matter what algorithm is used
to find the solution. For correlated sources, let the correlation
between ith and jth sources be denoted by ρij where

ρij , E(xix
∗
j ) 6= 0, i 6= j. (3)
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We will investigate what conditions need to be satisfied for
identifying D sources in this correlated scenario, especially
if D can still be O(M2). The conditions are based on (i)
the relation between the relative magnitudes of ρij and the
power of the ith source pi, as well as (ii) the structure of
manifold matrix A. The conditions on A are further simplified
in terms of the Kruskal rank [8] and the cumulative coherence
function [19] of A. We also study the performance of a greedy
approach, namely, Orthogonal Matching Pursuit (OMP) which
is popularly used as a fast heuristic for solving the support
recovery problem [19]. We establish a similar set of conditions
for OMP to successfully recover the sparse support in the
noisy setting, building upon the results in [21]. It is shown
that if s0 be the guaranteed sparsity level that traditional
formulation of OMP can recover, then OMP applied to the
proposed framework can recover a sparsity level s which
satisfies s > s0. In fact, both the fundamental condition for
uniqueness of sparse support, and the specific guarantee for
OMP indicate that it is possible to recover support of much
larger size, provided the cross correlation between signals is
small enough compared to their power. This is very practical
since it quantifies the connection between the degree of
correlation and identifiability.

II. SUPPORT RECOVERY FROM COVARIANCE MATRIX:
PROBLEM FORMULATION

Consider the model y = Ax0 where A ∈ CM×N is a fat
matrix with N �M and x is a sparse vector with S0 denoting
the set of indices of its non zero elements. The vector x0 is
sparse since |S0| < N . The goal is to recover the set S0
(also known as the support of x0) from this measurement
model. Unlike most approaches to support recovery which
seek to recover the vector x0 in a deterministic setting (i.e.,
consider x0 as an unknown deterministic quantity), we treat x
as a random vector and seek to recover the support from the
covariance matrix of

Ryy = E(yyH)

This problem arises in a variety of applications such a
spectrum sensing in cognitive radios, Direction of Arrival
Estimation, and a variety of spectral estimation techniques that
explicitly utilize the covariance matrix.

It has been recently shown [14] that under the assumption
that x0 is a zero mean random vector with a diagonal cor-
relation matrix, (i.e., the entries of x0 are statistically uncor-
related), it is possible to design suitable matrix A such that
one can recover sparse support of size upto |S0| = O(M2).
Previously existing results on sparse recovery which do not
consider such a correlation structure for x0 could only recover
sparsity levels of |S0| = O(M). In this paper, we consider the
situation when the non zero elements of x0 can be actually
correlated, violating the condition of a diagonal correlation
matrix. We would like to investigate how large the support can
be so that it is still possible to uniquely identify it from the
covariance vector. We would also like to explicitly characterize
the role played by the correlation in this regard.

To address these questions, let us set up a model based
on the correlation matrix Ryy. Define pi = E([x]i[x]∗i ) and
ρij = E([x]i[x]∗j ). Representing Ryy in a vectorized form, we
obtain

z = vecRyy = (A∗ ⊗A)vecRxx (4)
= (A∗ �A)︸ ︷︷ ︸

AKR

p+Acrossq︸ ︷︷ ︸
e

(5)

Here, the symbol � denotes the Khatri Rao product whereas
⊗ denotes the Kronecker product. The vector q ∈ C(N2−N)×1

is a sparse vector consisting of elements ρij , 1 ≤ i 6= j ≤ N .
If we represent the ith column of A as ai, then the columns
of Across ∈ CM2×(N2−N) are given by a∗i ⊗ aj , i 6= j, i, j ∈
{1, 2, · · · , N}. Note that q is also a sparse vector with sparsity
|S0|2 − |S0|. The vector p ∈ CN×1 is a sparse non-negative
vector with the same support S0 and the elements in the non
zero locations given by pi, i ∈ S0. Hence, if we can recover
the vector p from (5), we will be able to recover S0. It is
to be noted that the non zero cross correlation between the
elements of x manifest themselves in the form of the additive
noise like term e. Hence the model (5) is reminiscent of a
sparse observation model (with A∗ � A playing the role of
the measurement matrix) in a noisy setting. We will like to
investigate the conditions under which S0 can be uniquely
recovered, first for a generic support recovery problem with
noise and then specifically for z satisfying (5).

III. UNIQUENESS OF SUPPORT RECOVERY FROM
CORRELATION MATRIX

Consider a noisy observation with bounded noise

y = Ax0 + n (6)

where Supp(x0) = S0 and ‖ n ‖2 < ε. We would be
interested in knowing the condition under which the following
(non convex) support recovery problem will yield the true
support:

min
x
‖ x ‖0 (P0)

ε (7)

subject to ‖ y −Ax ‖2 < ε (8)

Since ε gives a measure of the noise power, we define the
Signal-to-Noise-Ratio (SNR) as

SNR ,
|x0min|

ε
(9)

where amin represent the minimum non zero element of a
vector a. We also define parameter σmins (A) and σmaxs (A)
of A which will be useful to provide guarantees for recovery
of S0. These quantities are closely related to the RIP constant
as proposed by Candes [4]. Given a set of integers S, we
denote AS as the sub matrix of A consisting of the columns
of A indexed by the elements of S.

Definition 1: Given a matrix A and integer s, the parame-
ters σmins (A) and σmaxs (A) are defined as

σmins (A) = min
S⊂[N ]:|S|=s

√
λs(AH

S AS) (10)

σmaxs (A) = max
S⊂[N ]:|S|=s

√
λ1(AH

S AS) (11)

where for a matrix B, λi(B) denotes the ith largest eigenvalue.
The following theorem states the sufficient condition under
which (P0)ε yield S0. A result of similar flavor is available
regarding the stability of the solution to (P0)

ε (see, for
example, [3]) but to the extent of our knowledge, such results
do not establish uniqueness of the support.

Theorem 1: Consider the model given by (6). The solution
x∗ to (P0)ε satisfies Supp(x∗) = S0 if

Krank(A) > 2 | S0 | (12)

and

| x0min |>
2ε

σmin2|S0|(A)
. (13)
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Proof: The solution x∗ to (P0)ε will recover the true
support S0 if and only if there is only one vector x0 with
support S0 that satisfies ‖ y −Ax0 ‖2 < ε. We will show
that under the conditions Krank(A) > 2 | S0 | and
| x0min |> 2ε

σmin
2|S0|(A)

, this is indeed true. We will prove this

by contradiction. Let us assume that the solution x∗ to (P0)ε

does not have the support S0. Let Sx = Supp(x∗). Since Sx
is the minimizing support, | Sx |≤| S0 |. Since both x0 and
x∗ are feasible, we can write

‖ASx
[x∗]Sx

−AS0
[x0]S0

‖2 < 2ε (14)
⇒ ‖AS0∪SxxT ‖2 < 2ε (15)

where

xT =
[
[x∗]SxrS0

| [x∗]Sx∩S0
− [x0]Sx∩S0

| − [x0]S0rSx]
T .Since | Sx |<| S0 |, the number of columns in AS0∪Sx

is
at most 2 | S0 | and we can say (15) implies

σmin2|S0|(A)‖ xT ‖2 < 2ε (16)

Since Krank(A) > 2 | S0 |, σmin2|S0|(A) > 0 and we can say
(16) implies

‖ xT ‖2 <
2ε

σmin2|S0|(A)
(17)

Since S0\Sx 6= ∅, it follows that ‖ xT ‖2 > ‖ [x0]S0rSx ‖2 >|
x0min. | Therefore, (17) implies

| x0min |<
2ε

σmin2|S0|(A)

which is a contradiction to the given condition, and this
concludes our proof.

Theorem 1 states that even in the noisy scenario, the
following are true:

1) The solution of (P0)ε can yield the true support S0

of size upto |S0| < Krank(A)
2 . Since Krank(A) ≤ M ,

this indicates that the maximum size of the recoverable
support is |S0| = O(M).

2) The SNR should exceed the threshold t = 2
σmin
2|S0|(A)

.

Comparing (6) and (5), we find that for recovering S0 from
(5), the matrix of interest is AKR. The following lemma
establishes the relation between the singular values of A and
AKR

Lemma 1: Given a subset S ⊂ {1, 2, · · · , N}, the mini-
mum singular values of AS and AKRS satisfy

σmin(AKRS) ≥ σ2
min(AS) (18)

Proof: From the definition of column-wise Kronecker
products, it can be verified that

AKR
H
S AKRS =

(
A∗S �AS

)H(
A∗S �AS

)
=

(
AT
SA
∗
S

)
◦
(
AH
S AS

)
Here ◦ denotes the Hadamard Product. From properties of
Hadamard Product, for two positive semidefinite matrices
M,N, the minimum eigenvalues λmin satisfy [22, p. 312]

λmin(M ◦N) ≥ λmin(M)λmin(N) (19)

from which the desired condition follows.
The problem of recovering the sparsest p satisfying (5) can

be cast as

min
r
‖ r ‖0 (P0)εCo−SMV (20)

subject to ‖ z−AKRr ‖2 ≤ ε (21)
where ε is an upper bound on e.

Denote pmin = mini∈S0
pi. Then, applying Theorem 1, we

get the sufficient condition for the solution of (P0)εCo−SMV
to uniquely recover the support S0:

Theorem 2: Consider the model (5) derived from the cor-
relation matrix of the observed vector y. The solution r∗ to
(P0)εCo−SMV satisfies Supp(r∗) = S0 if

Krank(AKR) > 2 | S0 | (22)
and

pmin >
2ε

σmin2|S0|(AKR)
(23)

Remarks:
We can make the following important observations from
Theorem 2

1) Size of the identifiable support : It is fundamentally pos-
sible to uniquely identify sparse support of size as large as
Krank(AKR). Since 2Krank(A) ≤ Krank(AKR) ≤M2,
it is possible to recover sparsity levels as large as O(M2).
In [14], we give examples of constructing A such that
AKR has Kruskal rank as large as O(M2). It can further
be proved that if A is a random matrix with i.i.d entries,
then AKR has Kruskal rank O(M2)

2) Role of non zero cross correlation: The above claim
regarding size of the recoverable support is true if the
condition condition pmin > 2ε

σ2|S0|(AKR) holds. Denote

ρmax , maxi 6=j | ρij |. Then,

‖e‖2 = ‖Acrossq‖2
≤ ‖Across‖2‖q‖2
≤ ‖A∗S0

⊗AS0
‖
2
‖q‖2

=
(
σmax|S0| (A)

)2
‖q‖2

≤
(
σmax|S0| (A)

)2√
| S0 |2 − | S0 |ρmax (24)

Therefore the condition (23) is satisfied if

pmin

ρmax
> 2
√
| S0 |2 − | S0 |

(
σmax|S0| (A)

)2
σmin2|S0|(AKR)

(25)

This relation explicitly shows that, if (P0)εCo−SMV can be
solved, it will be possible to uniquely identify support as large
as O(M2) (for suitable A such as those corresponding to
nested and cop rime arrays) provided the correlation terms
ρi,j ,∀i 6= j ∈ S0 are small enough compared to the power
pi of the non zero entries of x0. This leads to the following
corollary

Corollary 1: It is possible to recover support S0 of size
| S0 |< Krank(AKR)

2 by solving (P0)εCo−SMV provided the
cross correlation terms ρi,j are small compared to the power
pi of the non zero elements of x0, satisfying

pmin

ρmax
> 2
√
| S0 |2 − | S0 |

(
σmax|S0| (A)

)2
σmin2|S0|(AKR)

(26)
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Since (P0)εCo−SMV is NP-hard, we next analyze the
performance of a greedy heuristic which seeks to solve
(P0)εCo−SMV

IV. GREEDY SUPPORT RECOVERY UNDER NOISE

In this section, we consider the performance of a specific
greedy algorithm called the Orthogonal Matching Pursuit
(OMP) which seeks to find the support S0 from z in (5).
The performance of OMP in the noisy setting was recently
analyzed in [21]. To obtain the condition under which perfect
support recovery is possible, we will need the following
definition [19]

Definition 2: [19] Given an integer s, the cumulative
coherence function of a matrix A is defined as

µA
1 (s) = max

S:|S|=s
max
j 6∈S
‖AH

S aj‖1 (27)

Consider the noisy observation model (6). Define

MS0
(A) = maxj 6∈S0

‖
(
AS0

HAS0

)−1
AS0

Haj‖1 where S0

denotes the support of x0. Also, given a matrix B, let
λS0

min(B) denote the minimum eigenvalue of BH
S0
BS0 . Then

the condition under which OMP yields the true support is
given by [21, Theorem 1 and Prop. 1 ]

Theorem 3: Consider the model (6) where ‖n‖2 ≤ ε and
µA
1 (| S0 |) + µA

1 (| S0 | −1) < 1. Then the OMP algorithm
with an appropriate stopping rule recovers exactly the true
subset of the correct support if all the non zero coefficients of
x0 satisfy [x0]i ≥ 2ε

(1−MS0
(A))λ

S0
min(A)

Hence, two conditions are important to guarantee the suc-
cess of OMP in the noisy setting:

1) The support S0 should be such that µA
1 (| S0 |) + µA

1 (|
S0 | −1) < 1. Since µA

1 (s) is an increasing function of
s, this is ensured if

µA
1 (| S0 |) <

1

2
(28)

2) The signal to noise ratio SNR = [x0]i
ε should be high

enough, i.e.,

SNR ≥ 2

(1−MS0
(A))λS0

min(A)
(29)

We would like to know how the above guarantees extend
to OMP applied on the vectorized correlation z given by (5).
It is to be noted that here we need to consider the matrix
AKR instead of A. The following lemma relates µAKR

1 (s)
and µA

1 (s)
Lemma 2: Given an integer s, The cumulative coherence

function of A and AKR are related as

µAKR
1 (s) <

(
µA
1 (s)

)2
(30)

Proof: See [23].
In light of the above results, we can now state the conditions

under which OMP applied on z in (5) can recover the support
S0.

Theorem 4: Consider the representation (5) of the covari-
ance matrix with S0 denoting the common sparse support.
The OMP algorithm with an appropriate stopping rule recovers
exactly the true subset of the correct support if

µA
1 (|S0|) <

1√
2

(31)

and

pmin

ρmax
≥

2
√
| S0 |2 − | S0 |

(
σmax|S0| (A)

)2[
1−

(
µA
1 (|S0| − 1)

)2]
[
1−

(
µA
1 (|S0| − 1)

)2
−
(
µA
1 (|S0|)

)2]
λS0
min(AKR)

(32)

Proof: Follows from the Theorem 3, the inequality (24)
and the fact that MS0

(A) ≤ µA
1 (|S0|)

1−µA
1 (|S0|−1)

The above theorem also shows that it is possible to recover
any support S0 provided its size is such that (31) holds and
the correlation terms are small compared to the power of non
zero elements so that (32) holds. Since µA

1 (s) is an increasing
function of s, it is clear that (31) indicates that a larger support
can be recovered when compared with (28).

V. NUMERICAL EXAMPLE

In this section we conduct a short numerical experiment
to study the performance of OMP applied on z in (5) with
varying levels of cross correlation ρij . The main idea is to see
how the matrices A and AKR compare in terms of recovery
performance of OMP. Let A be a random Gaussian matrix
with M = 20, N = 150. We consider a sparsity level of
| S0 |= 15. We first apply OMP directly to the measurement
y = Ax where x has a sparsity of | S0 |= 15. It is to be noted
that for the given values of M , N and the sparsity | S0 |, OMP
performs poorly in terms of recovering the original support
(see, for example, Fig. 1 in [20]). Fig. 2 further demonstrates
this by plotting the true support and that recovered by the
OMP algorithm. We also define the percentage of successful
recovery as the percentage of correct atoms identified by OMP
averaged over 500 random realizations of A. The percentage
of successful recovery turns out to be 26.67% in this case.

We now demonstrate that OMP applied to the covariance
matrix represented by (5) performs significantly better than
the previous approach. Fig. 1 shows a sample run for three
different levels of cross correlation ρmax given by 0, 0.05 and
0.5 respectively. The plot shows the correct indices as well as
the indices recovered by the OMP algorithm in the first 15
iterations of the algorithm. We also tabulate the percentage of
successful recovery in Table I by averaging over 500 Monte
Carlo runs for the three different levels of ρmax. It can be
seen that OMP applied on proposed framework is significantly
better than that applied directly on the measurement model for
the given level of sparsity. Also, as expected, the performance
of OMP improves as the cross correlation terms become
smaller.

TABLE I
PERCENTAGE OF INDICES RECOVERED BY OMP APPLIED ON Ryy

ρmax = 0 ρmax = 0.05 ρmax = 0.5
% Recovered 94.1 89.3 66.67

VI. CONCLUSION

We studied the problem of sparse support recovery from
the covariance matrix of measurements and what advantages
it can offer over recovering the support from the measurement
itself. It was previously shown that when the non zero elements
of the unknown sparse vector are statistically uncorrelated,
recovery algorithms based on the covariance matrix can lead
to an order of magnitude increase in the size of the recoverable
support. In this paper, we investigated if this continues to hold
when there is correlation among the non zero elements. We
showed that the relative magnitude of the correlation terms
and the power of the non zero elements play a crucial role
in this regard. We derived a fundamental guarantee on the

4
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Fig. 1. Support Recovered by OMP applied to the covariance matrix Ryy
of the measurement y plotted for different values of ρmax: (a) True Support,
(b)ρmax = 0, (c) ρmax = 0.05 (d) ρmax = 0.5. Here M = 20, N =
150, | S0 |= 15 and pmin = 1.
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Fig. 2. (a) True Support (b) Support Recovered by OMP applied directly to
the measurement y. Here M = 20, N = 150, | S0 |= 15.

maximum size of the sparse support which ensures that the
sparse representation of the covariance matrix is unique even
when there is correlation among the non zero elements. This
guarantee is independent of any specific algorithm used. We
also developed guarantees for the OMP algorithm for sparse
support recovery from the covariance matrix. The uniqueness
condition as well as the recovery guarantees of OMP indicate
that it is possible to recover larger sparse support from the
covariance matrix even in the presence of correlation, provided
the correlation terms are small enough compared to the power
of the non zero elements.
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