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ADAPTATION OF HMM DYNAMIC PARAMETERS IN REVERBERANT ENVIRONMENT
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Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea

ABSTRACT

This paper presents a new adaptation method for HMM-based
automatic speech recognition system in a reverberant envi-
ronment. Unlike the conventional approach that estimates dy-
namic mean vectors by adopting a spline interpolation tech-
nique, the proposed algorithm uses the transform derived by
the mathematical property. Additionally, we introduce the
adaptation for covariance matrices with the domain conver-
sion process induced by log-normal distribution, because the
statistical parameters are affected by not only mean vectors
but also covariance matrices. Consequently, all statistical pa-
rameters in HMM can be adapted by the exact same trans-
form structure. Experimental results show that the proposed
method improves the recognition rate, in spite of having much
simple adaptation process. Also it is robust to the estimation
error that is unavoidable while extracting the reverberation
time related parameters.

Index Terms— Robust automatic speech recognition,
dereverberation, model adaptation.

1. INTRODUCTION

Although the performance of automatic speech recognition
(ASR) system has been increased significantly, the applica-
tion area of the system is still limited because the performance
drops if the system is used in reverberant or noisy environ-
ments. The reason can be found from the mismatch caused by
the variation of acoustical environments between input speech
features and trained acoustic models. In order to reduce the
mismatch, a variety of approaches have been proposed. Spec-
tral subtraction [1] or inverse filtering [2] are typical exam-
ples to improve the robustness in reverberant environments.
Those methods suppress the late reverberation component ef-
fectively, whereas they are still inappropriate for the ASR sys-
tem because of inevitable spectral distortion.

For such reason, model adaptation approaches for addi-
tive and convolutive noise environment have been proposed.
The approaches estimate the corrupted hidden Markov model
(HMM) [3] from the clean acoustic model by using parallel
model combination (PMC) [4] and vector Taylor series (VTS)
[5]. Although these methods improve the recognition per-
formance somehow, the adaptation algorithm cannot be ap-
plied directly to reverberant environments because the length

of room impulse response (RIR) is usually much longer than
that of analysis window.

Recently, a model adaptation method for reverberant en-
vironment has been introduced. This method is to adapt static
spectral parameters using an approximated exponential func-
tion of RIR [6]. Moreover, it has been extended to adapt-
ing dynamic parameters by introducing a spline interpola-
tion technique [7]. Although the adaptation method improves
word error rate (WER) somehow, it requires high computa-
tional complexity. Besides, the adaptation method including
both static and dynamic parameters even results in lower per-
formance than the one including only static parameters if the
reverberation time parameter (i.e. T60) is improperly esti-
mated.

This paper proposes an efficient adaptation method for dy-
namic parameters of HMM. The proposed algorithm derived
by the property of differentiation of convolution enables that
the dynamic parameters can be also included into the same
form of adaptation formula to the one for static parameters.
In other words, both static and dynamic parameters can be
processed simultaneously. Moreover, utilizing the fact that
the probability density function is still Gaussian after per-
forming discrete cosine transform (DCT), the property of log-
normal distribution can be applied while transforming statis-
tical parameters of HMM. To evaluate the effectiveness of
the proposed algorithm, connected digits recognition experi-
ments are performed in six different room environments. The
proposed method shows higher word accuracy than conven-
tional methods in all the tested reverberant environments.

The rest of paper is organized as follows. In Section 2, an
overview of reverberation effect in the parametric domain of
HMM is provided, then conventional adaptation algorithms
are briefly reviewed. In Section 3, the proposed adaptation
algorithm is described in detail. The performance evaluation
results are given in Section 4, and conclusion follows in Sec-
tion 5.

2. HMM MODEL ADAPTATION FOR
REVERBERANT ENVIRONMENT

2.1. Long convolutional distortion

Channel distortion is typically modeled by a convolution be-
tween speech signal x[n] and channel characteristic h[n] in
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Fig. 1. Schematic diagram of recognition system for rever-
berant environment

time domain. In frequency domain, it can be interpreted by a
multiplication of two terms given as follows:

Y (l, k) = H(l, k)X(l, k), (1)

where l and k are the frame and frequency bin index respec-
tively. However, when the length of window for short time
Fourier transform (STFT) is much shorter than that of RIR,
the convolution in time domain cannot be represented as a
multiplication in frequency domain. Instead, the reverberant
signal is usually approximated by a convolution in frequency
domain because it can be represented by a superposition of
delayed frame sequences. Therefore, the approximated rever-
berant signal in STFT domain is given by

Y (l, k) ≈
LF−1∑
i=0

H(i, k)X(l − i, k), (2)

where LF is the frame length of RIR [8].

2.2. Adaptation of static parameters

Since the adaptation process is performed in mel spectral do-
main, the acoustic model needs to be converted from cepstral
domain to mel spectral domain. The detailed conversion pro-
cess is depicted in Fig. 1. The concept of the adaptation is
that reverberant spectral parameters can be approximated by
weighted sum of the spectral parameters in the current and
previous states. To simplify the adaptation process, probabil-
ity density functions in all states except current state are con-
sidered as a single Gaussian mixture. Therefore, the averaged
mean vector can be obtained by

µ̄mel
x (i− j) =

M∑
m=1

wmµ
mel
x (i− j,m), (3)

state i-1 state i state i-2 state i-3 

( )h t

t ( , 1)
e

t i i -( , 1)
s

t i i -

, 1i i
a

- ,i i
a

Fig. 2. Estimation of weighting coefficients αi,i−j

where wm is the weight value for mth mixture component.
Fig. 2 represents the weighting coefficients which indicate the
amount of attenuation derived by RIR. If the RIR is modeled
as an exponentially decaying function, the coefficient of (i−
j)th state based on the ith state is calculated as follows:

αi,i−j =

∫ te(i,i−j)
ts(i,i−j) |h(t)| dt∫∞

0
|h(t)| dt

, (4)

where ts(i, i − j) and te(i, i − j) are the start and end time
of (i − j)th state calculated from the ith state, respectively
[8]. The start and end time of each state are usually estimated
by self transition probabilities in HMM (See [7] for details).
Then, the spectral mean vector of reverberant speech can be
approximated by

µmel
y (i,m) = αi,0µ

mel
x (i,m) +

i∑
j=1

αi,i−jµ̄
mel
x (i− j). (5)

Finally, the adapted acoustic model in cepstral domain is
obtained by taking a logarithmic function and multiplying a
DCT kernel.

2.3. Adaptation of dynamic parameters

It is known that the dynamic characteristic of acoustic model
also changes in the reverberant environment. In the previ-
ous research [7], dynamic parameters were estimated from the
continuous spectral trajectory by the weighted sum between
interpolated clean model and the average differences given as
follows:

µlog
∆y(i) = µlog

∆x(i) + β · µ̄log
diff

(
ts(i, 0) + te(i, 0)

2

)
, (6)

where µ̄log
diff is defined as the difference between adapted log-

mel spectrum µ̄log
∆y and clean log-mel spectrum µ̄log

∆x.
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3. PROPOSED ALGORITHM

3.1. Dynamic parameters adaptation using the time dif-
ferentiation of convolution

In the conventional algorithm [7], plenty of computational
power is used for adapting dynamic parameters. It is also
found that the performance degrades if the reverberation time
parameter is not properly estimated. We thought that the
statistical characteristic of dynamic parameters can be de-
rived by another form similar to the static parameters because
dynamic parameters are calculated by the weighted sum of
neighboring static parameters.

The proposed adaptation method for dynamic parameters
is derived by the time differentiation of convolution, which
has the following property for all continuous time signals f
and g, where t indicates the time index.

d

dt
(f ∗ g) =

∫ ∞
−∞

f(τ)
d

dt
g(t− τ)dτ

=
df

dt
∗ g. (7)

To compute dynamic parameters (i.e. delta and delta-delta),
the differentiation operator in continuous domain can be ap-
proximated as follows:

d
(
ymel(l)

)
dl

≈ ∆ymel(l)

=

2∑
τ=−2

τ
(
ymel(l + τ)

)
2

2∑
τ=−2

τ2

, (8)

where l indicates the frame index. According to [9], the oper-
ator satisfies the following analogous relationship.

d

dl

(
ymel(l)

)
= hmel(l) ∗ d

dl

(
xmel(l)

)
. (9)

Therefore, the following equation is also satisfied.

∆ymel(l) = hmel(l) ∗
(
∆xmel(l)

)
. (10)

In our model adaptation framework, Eq.(10) can be rewritten
as

µmel
∆y (i,m) = αi,0µ

mel
∆x (i,m)+

i∑
j=1

αi,i−jµ̄
mel
∆x (i− j), (11)

where αi,i−j is the weighting coefficients given in Eq.(4). As
we approximates the RIR as an exponentially decaying func-
tion, it can be rewritten by

αi,i−j =

∫ te(i,i−j)
ts(i,i−j) exp

(
−3 ln(10)
T60M

)
dt∫∞

0
exp

(
−3 ln(10)
T60M

)
dt

, (12)

where T60M is the model reverberation time. In conclusion,
the adaptation for both static and dynamic mean vectors can
be interpreted as

 µmel
y (i,m)
µmel

∆y (i,m)

µmel
∆∆y(i,m)

 = αi,0

 µmel
x (i,m)
µmel

∆x (i,m)
µmel

∆∆x(i,m)


+

i∑
j=1

αi,i−j

 µ̄mel
x (i− j)
µ̄mel

∆x (i− j)
µ̄mel

∆∆x(i− j)

,
(13)

which is the exact same form of Eq.(5), (11).

3.2. Effects of covariance matrices

In the previous researches [6][7][8], spectral parameters are
transformed between mel and log-mel domain by logarithmic
and exponential operators. However, since the acoustic mod-
els in HMM framework are composed of not the sample but
statistical parameters(i.e. mean, covariance), they do not fol-
low the simple relationship.

Since the DCT operator does not change the property of
Gaussian distribution, the probability density function in log-
mel spectral domain can be also regarded as Gaussian dis-
tributed function. Hence, the statistical parameters in mel
spectral domain can be approximated by log-normal distri-
bution given as follows:

µmel(k) = exp

(
µlog(k) +

Σlog(k, k)

2

)
(14)

Σmel(k, l) = µmel(k)µmel(l)
(
exp(Σlog(k, l))− 1

)
(15)

µlog(k) = log(µmel(k))− 1

2

(
Σmel(k, k)

µmel(k)
2 + 1

)
(16)

Σlog(k, l) = log

(
Σmel(k, l)

µmel(k)µmel(l)
+ 1

)
, (17)

where k and l is the index of feature dimension. Since the
mean vectors in the log-mel spectral domain are affected by
both mean vectors and covariance matrices in Eq.(14), we
also needs an adaptation algorithm for updating covariance
matrices. Under the assumption of independency in each
state, the following equation is derived in this paper.

Σmel
y (i,m) = α2

i,0Σ
mel
x (i,m) +

i∑
j=1

α2
i,i−jΣ̄

mel
x (i− j).

(18)
The equation is also represented by the same form as Eq.(11).
Consequently, not only mean vectors but also covariance ma-
trices can be adapted in the same framework we proposed.
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Fig. 3. Word accuracy for a variation of the model reverbera-
tion time T60M

4. EXPERIMENTAL EVALUATION

4.1. Experimental setup

To analyze the performance of the proposed method, experi-
ments are conducted on the TIDigits database with all utter-
ances down-sampled at 8 kHz. To create whole word HMMs
for all digits, HTK version 3.4.1 is used. Each digit model
has 16 states with the mixture of three Gaussians per state,
and one silence model has three states with the mixture of six
Gaussians. Additionally, a short pause model for inter-word
connection is created, which has a single state and shares the
mixtures with the silence model. For the acoustic feature,
conventional 39-dimensional mel-frequency cepstral coeffi-
cient (MFCC) vector including 0th-order coefficient is used.
In the experiment, various types of RIR are used to evaluate
the performance of the proposed algorithm. To obtain rever-
berant speech data, clean speech data are convoluted with two
different types of artificial RIRs generated by Polack’s model,
and image method [10] [11]. Besides, measured RIRs in the
real reverberant environment from Mardy database [12] are
also used. In each method, two different RIRs having dif-
ferent reverberation time are used to verify the robustness to
the estimation accuracy of reverberation time. In the experi-
ment, the reverberation time is fixed depending on the room
environment.

4.2. Experimental results

The performances of conventional and proposed methods
are compared in various types of reverberant environments.
In all figures and table, the baseline indicates the recogni-
tion system without employing any adaptation process, and
conv.1 means the algorithm that adpats only static mean vec-
tors by conventional method given in Eq.(5). In conv.2, the
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Fig. 4. Word error rate for a variation of reverberation time
T60 in Polack’s model

Table 1. Word Accuracy (%) for connected digits recognition

Type Polack’s Image Measured
T60(ms) 500 800 540 780 598 687

baseline 74.92 55.88 78.60 63.74 76.60 82.97
conv.1 80.53 67.33 82.96 73.66 83.73 87.07
conv.2 82.32 68.25 86.92 76.63 86.25 88.18
prop.1 83.88 71.69 87.29 80.07 86.61 89.32
prop.2 84.16 72.28 87.66 80.32 86.83 89.41

adaptation for dynamic mean vectors are added to conv.1 by
Eq.(11). The following method prop.1 represents the pro-
posed algorithm that to both static and dynamic mean vectors
are adapted as is given in Eq.(13). Finally, prop.2 indicates
the proposed algorithm that the adaptation of covariance
matrices are also applied to prop.1.

In Fig. 3, the word accuracy to the different T60M is dis-
played where the RIR is generated by Polack’s model. The
proposed method has a relative improvement of 10.41% to
conventional method in terms of WER when the reverbera-
tion time is 500ms. Here, T60M value (140ms) is much lower
than the actual reverberation time, the reason for the differ-
ence is reported in [8]. In addition, the slope of right hand
side of the peak point (140ms) in each curve proves that the
proposed methods make the system be less sensitive to T60M

value. Fig. 4 depicts the WER obtained by varying the rever-
beration time of Polack’s model. It shows that WER has been
reduced by the proposed methods regardless of reverberation
time variation. Furthermore, it shows that the amount of im-
provement by taking the proposed methods becomes larger as
the reverberation time is longer. Finally, Table. 1 represents
the word accuracy of each algorithm in six different room en-
vironments. It shows that the proposed algorithms improve
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the recognition performance in the environments of both mea-
sured and artificially generated RIRs. These results confirm
the superiority of the proposed methods to the conventional
methods.

5. CONCLUSION

In this paper, an efficient adaptation method for the dynamic
parameters of ASR system in reverberant environment has
been proposed using mathematical convolution properties.
The proposed method simultaneously adapts all statistical
parameters in HMM within a same structure, therefore it
significantly lowers computational complexity. Especially, it
is more effective for the environment of long reverberation
time. The proposed approach works well even the situation
where the estimation accuracy of the reverberation time is
imperfect.
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