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ABSTRACT

The main goal of this work is the development of an improved
Large Vocabulary Continuous Speech Recognition (LVCSR)
framework in Greek. Language modeling is carried out in a
collection of journalistic text and in the acoustic signal pro-
cessing, a nonlinear approach is implemented for deriving
features of the AM-FM type. Experimentation is carried out
in both clean and simulated far-field speech offering insight
about the acoustic modeling under adverse conditions with re-
verberation and additive ambient noise. Beyond the baseline
implementation, a first step is made in exploring how stan-
dard (MFCCs and PLPs) and modulation features (AM-FM)
behave in a LVCSR framework when the input speech is dis-
tant, like in real life home applications.

Index Terms— Speech Processing, Acoustic modeling,
Language modeling, Large Vocabulary Continuous Speech
Recognition

1. INTRODUCTION
One of the main difficulties in Greek Automatic Speech
Recognition (ASR) is the complex nature of the language
due to multiple inflectional rules. Thus, many efforts have
been made in language processing and modeling, but only
a few works report extensive results in Large Vocabulary
Continuous Speech Recognition (LVCSR) problems which
involve many other issues regarding feature extraction, acous-
tic modeling and recognition methods. Among these works is
the implementation of a dictation system [3] which achieved
19.27% Word Error Rate (WER) by using speaker-independent
genomic Hidden Markov Models (HMMs) [2]. A WER re-
duction of 0.28% was obtained on the same database by using
maximum entropy language models [9] that employ stem in-
formation to cope with the very large number of distinct
words. Another LVCSR module has been implemented in [6]
for a Greek Broadcast transcription system where the reported
WER for speaker-independent recognition in mixed record-
ing conditions was 38.42%. On Greek phoneme recognition,

This research was supported by the European Union under the research
program DIRHA with grant FP7-ICT-2011-7-288121.

experiments have been conducted on the SpeechDat(II)-FDB-
5000 Greek database [1], yielding 39.06% classification ac-
curacy. Finally, some efforts have also been made for ASR
in home environments. An implemented system [8] with
a low-cost microphone recognized 3.2k Greek words and
instructions in spontaneous speech, using a task-dependent
grammar yielding 5.25% WER in recordings with 12dB SNR.
The acoustic modeling was based on the SpeechDat(II)-FDB-
5000 corpus. Overall, a possible limitation of these works is
the employment of standard front-end methods for extracting
the traditional cepstral features that are applied only for small
and medium vocabulary tasks.

Our motivation for this work lies basically in the fact that
Greek ASR lacks extensive experimentation in large vocab-
ulary databases. Additionally the front-end is mostly based
on the linear speech model with the traditional cepstral fea-
tures without attempting to extend or to combine with other
nonlinear features that overcome some assumptions of the
linear speech production. In addition, AM–FM features and
their variants have been proved effective for other recognition
problems in other languages (Spanish, English). Although
some efforts have been made to improve the acoustic and the
language modeling for Greek, only a few works have com-
pletely integrated all the components in a ASR framework for
LVCSR experimentation. The next sections describe all the
components of the implemented recognizer and the obtained
results in a large vocabulary Greek speech corpus. Language
modeling with n-grams is described in Sec. 2, while in Sec. 3,
the extraction of standard Mel-Frequency Cepstrum Coeffi-
cients (MFCCs), Perceptual Linear Prediction (PLP) coef-
ficients and nonlinear AM-FM based features for speech is
analysed. Section 4 involves the acoustic modeling with con-
text independent triphones and Sec. 5 describes the conducted
experiments and the obtained results for clean speech and far-
field simulations. Finally, Sec. 6 concludes the paper.

2. LANGUAGE MODELING FOR GREEK ASR

This section describes the development of back-off n-gram
language models for Greek in the field of journalism. The
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specific field is selected for two reasons: (a) Journalistic text
is considered as formal representative of written language and
(b) the speech corpus is recorded by journalists for a variety
of news including politics, athletics, entertainment etc. The
effectiveness of the implemented models is measured in terms
of perplexity, out of vocabulary rate (OOV) and WER.

2.1. Language characteristics

Greek is an inflectional and morphologically rich language.
Verbs are varied by the usage of eight tenses and six persons
while articles, adjectives and nouns must agree with the sub-
ject in number, gender and person. All these forms of varia-
tion produce a very big vocabulary size. To compare with En-
glish, the Wall Street Journal corpus consists of 37.2M words
from which only 165K are unique and thus, the correspond-
ing sizes of Table 1 prove that Greek is much more complex.
Stem-based approaches [9] have been used to cope with the
large vocabulary issues but the reported WER improvement in
recognition was minor. In this work, we developed n-grams
to model word sequences.

2.2. N-gram models and lexical content

Bigram and tri-gram models are built in a collection of Greek
journalistic text from various sources, containing 12.2M
words. As Table 1 depicts, the sources of text are tran-
scriptions of the “Logotypographia” [3] corpus in which
LVCSR experiments are conducted (set L), transcriptions of
a broadcast news corpus named “GridNews” [6], and text
from the web site of a reputable Greek newspaper named
“Eleftherotypia”. The L set is split into sets Lt and Le with
|Lt| = 30000 and |Le| = 1000 sentences. The latter corre-
sponds to the evaluation set for both language modeling and
recognition. Set Lt consists of the remaining sentences of L
that do not overlap with Le.

Language modeling is implemented with the Carnegie
Mellon University language modeling toolkit [11] which
supports Good-Turing discounting for better modeling of
low-frequency word sequences. The presented models in Ta-
ble 2 are trained either on the whole text (LEG) or on subsets
where the text of set L does not participate at all (EG) or par-
tially (LtEG) with sentences from the training set Lt only.
Another varying factor is the vocabulary size. This consists
either of 4.8k words (i.e., the unique words of test set Le), or
of 37k words (i.e., the unique words of the entire set L). In
this way we are able to explore how the size and the type of
training text affect the perplexity of the models and also the
recognition performance. Moreover, we compare models of
the closed-vocabulary type against more general ones having
larger vocabularies than in the recognition set.

The Perplexity (PP) and WER results of Table 2 confirm
the expected fact that the LEG-37k set is overtrained because
Le ⊂ L. Comparing LtEG-37k with LtEG-4.8k, perplex-

text resources # words voc. size
(L) “Logotypographia” corpus 550 k 37 k
(E) “Eleftherotypia” web-site 11 M 233 k
(G) “GridNews” corpus 670 k 47 k

total 12.2 M 242 k

Table 1. The text resources employed in Greek language
modeling with their approximate text and vocabulary sizes.

model PP bigrams PP tri-grams WER
LEG-37k 143.40 30.10 3.34
LtEG-4.8k 252.18 178.90 10.81
EG-4.8k 1173.00 598.00 11.49
LtEG-37k 321.20 212.35 14.16

Table 2. Performance of the four developed Greek bigram
and tri-gram language models in terms of perplexity (PP) and
WER (for tri-grams) measured on the eval set (Le) of the
“Logotypographia” corpus which is used for Greek LVCSR.

ity and WER degrade relatively almost 20% and 31% respec-
tively. Finally, it is observed that the undertrained EG-4.8
set acts in recognition almost in the same way with LtEG-
4.8k although the perplexity is significantly increased (e.g.,
598.00 vs. 178.00). All the models above have zero OOV
rates. In addition, we implement a more general model set
LEG-242k trained and tested on the 20% and 80% of the
LEG text respectively for all the 242k unique words that ap-
pear in the text. The perplexity for tri-grams was measured
at 192.0 and the OOV was 8%. The achieved performance is
near the state-of-the-art for Greek language modeling as it is
reported for texts of the same content and size [9].

Notice that for the LVCSR experiments presented next,
only tri-grams are incorporated in decoding due to their su-
perior perplexity. In particular, LtEG-37k was chosen due to
its larger vocabulary size. Further, and in order to allow sys-
tem training and decoding, a Greek dictionary with multiple
pronunciations for 411k words is used to map the “Logoty-
pographia” vocabulary into phoneme sequences.

3. ACOUSTIC FEATURES

3.1. Cepstral & Perceptual Linear Prediction coefficients

The built-in HTK front-end [12] is used to derive 12 MFCCs
and 12 PLP coefficients fromN = 20 filterbank channels that
span the whole signal bandwidth. Short-time analysis is ap-
plied every 10 ms over 32 ms long speech frames that are first
Hamming filtered and pre-emphasized. The C0 coefficient is
also added for better description of cepstral energies. To cap-
ture speech dynamics, delta and acceleration coefficients are
also computed in 5-sample windows using the regression for-
mula that is implemented in HTK. Overall, 39-dimensional
feature vectors are produced per frame for each feature type.
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Fig. 1. Short-time non-linear analysis of (a) 32 ms of speech of phoneme /a/ by applying Gabor-ESA with six Mel-spaced,
50% overlapped Gabor filters. (b) Instantaneous amplitudes and (c) Instantaneous Frequencies (time axis in milliseconds) (d)
Quantities Fc and BW denote the central frequencies and bandwidths of the Gabor filterbank, both in Hz.

Finally, Cepstral Mean Substraction (CMS) normalization is
applied to compensate for long-term spectral effects, such as
those caused by different microphones and audio channels.

3.2. Nonlinear speech processing

Based on the evidence that speech resonances can be modeled
with an AM–FM signal

ri( t) = ai( t) cos
( ∫ t

0

ωi(τ) dτ
)
, (1)

a variety of modulation features have been proposed for
ASR [5] that are mainly extracted from the first- and second-
order statistics of the instantaneous amplitudes ai( t) and
angular frequencies ωi( t), as computed by applying one of
the Energy Separation Algorithms (ESA) [4] for signal de-
modulation. In this work, second-order modulation features
are described and used for ASR experiments namely (a) Mean
Instantaneous Amplitudes (MIA) and (b) Mean Instantane-
sous Frequencies (MIF) of the bandpasssed speech signals.
This set of features provide information about the variation
of each speech resonance signal in the time and frequency
domain. MIA and MIF features have been successfully ap-
plied to a variety of speech and music applications, such as
noisy speech detection [7], phoneme classification [4], and
music instrument classification [13]. Also, their combination
with standard MFCCs led to recognition improvements for a
medium-size vocabulary ASR task as reported in [5] .

3.3. MIA and MIF extraction

MIAs and MIFs are the short-time means of the normal-
ized instantaneous amplitude and frequency1 signals ai[n],
fi[n] = ωi[n]/2π, i ∈ [1,K], where i is the filter index. The
instantaneous frequency signal values are trimmed within
± 5% of their mean value, so that isolated spikes are ignored.
The same short-time analysis window length and step are
used as for MFCCs to extract MIAs and MIFs in three steps:

1Instantaneous frequencies fi, i ∈ [1,K] are measured in Hz.

1. The AM–FM composed speech s( t) =
∑K

i=1 ri( t) is
convoluted with a Gabor filterbank {gi( t)}, i ∈ [1,K].
The filterbank is Mel-spaced, spanning the interval
[ 0 , fs/2] Hz; also, K filters, in total, are used with a
frequency overlap of 50%.

2. Each signal component si( t) is demodulated to its
instantaneous AM–FM components ai[n], fi[n] using
Gabor-ESA [4].

3. The ai[n], fi[n] are averaged for the N samples of the
analysis frame. MIAs and MIFs are derived as (1/N)×∑

n log(ai[n]) and (1/N)×
∑

n fi[n], respectively, and
are concatenated to form feature vectors that are aug-
mented with their first- and second-order derivatives.

The above processing is applied to the 95% peak normal-
ized speech signals. Motivated by the non-linear human per-
ception of speech, MIAs are transformed using a logarithm.
MIFs are only scaled from the frequency domain to the [0,1]
range, by dividing with fs/2. Then, both features are mean
and variance normalized to cope with long-term effects. Stan-
dardization is applied per utterance, across filters for MIAs
in order to keep the relative information that exists between
the coefficients, and per filter for MIFs. Figure 1 depicts the
non-linear raw features for a frame. Smoothness of the corre-
sponding curves is achieved by computing signal derivatives
as convolutions and not as sample differences [4]. As it can
be observed, the existence of fine structure of speech formants
lies in the fact that their instantaneous frequencies vary in
reference with each filter’s central frequency. The variation
becomes more unstable in the higher frequencies due to the
usage of only K = 6 mel-spaced filters that span all the fre-
quency bins. Thus, in the next experiments, we also tried to
apply a Gabor filtebank with K = 12 filters. Overall, two
feature sets are produced for experimentation, MIAF-6 and
MIAF-12 corresponding to the concatenated MIA and MIF
vectors that are extracted forK = 6, 12 filters. These sets are
augmented with the signal’s squared-amplitude energy. Fi-
nally, first- and second-order derivatives are added to form
39- and 75-dimensional vectors for each set respectively.
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4. ACOUSTIC MODELING

Context dependent triphone HMMs are trained with approx-
imately 22.6 hours of speech. The developed HMMs consist
of three states with continuous density GMM probabilities
having diagonal covariance matrices. Due to the absence of
time labels in the “Logotypographia” transcriptions, a set of
three-state monophone models is first built using “flat-start”
initialization. Then, training of monophones, triphones, state
tying, and Gaussian mixture splitting is performed, resulting
to a set of tied-state, context-dependent triphones with three
states and 16 Gaussians per state. For the state tying pro-
cess, a decision tree clustering strategy is applied utilizing
82 hand-crafted phonetic questions adequate for the set of
28 phonemes considered for Greek LVCSR. Models for si-
lence and noise are also trained, the former employing short
segments at the beginning and end of each utterance, and the
latter using data transcribed as “breath”, “clear throat”, “paff
noise”, “paper rustle”, and “phone ring”. Four sets of acoustic
models are produced corresponding to the extracted feature
sets which are namely (a) the MFCCs, (b) the PLPs, (c) the
MIAF-6, and (d) the MIAF-12 as described above.

5. LVCSR EXPERIMENTS AND RESULTS

5.1. Clean speech and far-field simulations

Recognition experiments are based on the “Logotypografia”
database which has been developed in the Greek journalism
domain for speaker independent, large vocabulary dictation
systems and is publicly available for experimentation and
benchmarking. Specifically, we used a subset of 27 hours
of close-talk recordings and split it to three sets: (a) 22.6
hours of training data (train) b) 1.2 hours of develop-
ment (devel) data and (c) 2.3 hours of testing data (eval).
Each set is speaker independent consisting of 54, 15, and
15 non-overlaping, gender balanced speakers respectively.
The close-talk recordings took place in two different acoustic
environments: a) a sound proof room and b) a quiet en-
vironment with an AKG C410 head-mounted microphone
providing SNR levels that distribute in the range of 12-40 dB.
For further details on the database see [3].

Simulations of distant-speech in a home environment are
also considered for experimentation. It is assumed that the
simulated signal ŝ(t) is acquired by convolving the source
signal s(t) with a room impulse response r(t) that corre-
sponds to a specific acoustic path from the source to a distant
microphone. Further details about the estimation of impulse
responses can be found in [10]. The simulated signal is also
contaminated with additive ambient noise v(t). The simula-
tion formula ŝ(t) = s(t) ∗ r(t) + v(t) was applied in each
set of the clean recordings as described above. Two sets were
produced for experimentation, reverb1 and reverbR. In
reverb1, conditions are constant, i.e source in position LA

Fig. 2. Simulation map of an apartment living room. Green
(dashed) and red (solid) lines correspond to the source-
microphone location pairs which were simulated in the
reverb1 and reverbR sets, respectively.

(see the map of Fig. 2), microphone LR3 and additive am-
bient noise with gain 3. In the more challeging reverbR,
conditions are randomly changed by applying 10 source-
microphone impulse responses (LA-L3R, LA-LC1, LA-L4R,
LA-L2R, LC-LC1, LC-L4R, LC-L1R, LD-LC1, LD-L1R,
LD-L4R) combined with 3 noise levels (gains 3, 6, 9). With
these two sets, we can test the ability of the ASR system to
recognize distant speech from multiple speakers in multiple
positions inside the simulation room as it is depicted in Fig. 2.

5.2. Recognition results

To evaluate the developed Greek LVCSR system, recognition
experiments are conducted in matched and mismatched con-
ditions for the clean, reverb1, and reverbR sets, in a
speaker independent framework. The decoding parameters
such as the word insertion penalty, the weights for the acous-
tic and language models, and the pruning threshold are opti-
mized on the devel set. All decoding experiments are per-
formed using the HTK LVCSR decoder that supports tri-gram
language models [12]. The decoding vocabulary contains all
the 37k unique words of the corpus.

Speaker independent recognition results are reported in
terms of WER, %, in Table 3. Overall, the performance
under matched conditions is considered quite satisfactory,
especially given the large vocabulary size and the challeng-
ing conditions of the simulation sets. The achieved 14.16%
with MFCCs on the original set of the “Logotypographia”
database is comparable with the 19.27% that is reported in
[3] for a larger set of the same database. As expected, there
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testing conditions
training clean reverb1 reverbR
conditions MFCCs PLPs MIAF-6 MFCCs PLPs MIAF-6 MFCCs PLPs MIAF-6
clean 14.16 14.24 19.84 89.18 89.22 93.62 90.28 90.05 93.62
reverb1 96.49 95.42 98.02 33.19 32.38 38.97 41.64 44.09 50.68
reverbR 95.16 94.68 97.12 41.92 43.32 51.07 42.59 43.22 49.54

Table 3. WER, %, of the Greek LVCSR system on the eval set in matched (in bold) and mismatched train/test conditions.

is a performance degradation in the distant speech data that
is more pronounced in the more challenging reverbR sce-
nario. Moreover, when acoustic models are trained and tested
in mismatched conditions, the WER increases significantly
compared to the matched condition results. Such degradation
is less prominent between the two noisy conditions, compared
to the degradation between the noisy and clean conditions.
Comparing the three employed feature sets, MFCCs per-
formed on average slightly better in matched and mismatched
conditions. It is worth noting that the MIAF-12 set achieved
21.45%, 38.03% and 48.32% for matched conditions which
is slightly better than MIAF-6 in noise but degraded in clean
speech. On average, MIAF-12 has the same performance but
adds complexity due to the 75-dimensional feature vectors.

The performance of MIAF features is degraded in all con-
ditions, especially for the distant-speech sets but this perfor-
mance can be explained by the fact that the proposed mod-
ulation features were originally conceived for ASR in [5] as
capturing the second-order non-linear structure of speech for-
mants, whereas the linear speech model and its correspond-
ing features (e.g., MFCCs) capture the first-order linear struc-
ture of speech. This leads to considering an ASR system that
provides fusion of linear and non-linear features. A first at-
tempt to this direction has been made in clean data and results
showed that the combination of MFCCs with MIAF-6 in a
multi-stream HMM framework with stream weight optimiza-
tion, achieved a 2% relative reduction in WER.

6. CONCLUSIONS

We have designed and developed the components of a Greek
Large Vocabulary Continuous Speech Recognition frame-
work. The obtained improvements in language modeling
in terms of perplexity and WER, and the incorporation of
standard as well as nonlinear acoustic features led to rea-
sonable recognition performance for the challenging large
vocabulary database in which we experimented. Moreover, a
second contribution was the extraction and the incorporation
of second-order modulation features which may potentially
lead to improvements when fused with first-order features
stemming from the linear model of speech. Finally, beyond
the baseline implementation, a first step has been done in
exploring how standard (MFCCs and PLPs) and modula-
tion features behave in a LVCSR framework when the input

speech is distant like in real life home applications.
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