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ABSTRACT

The paper addresses the problem of target detection embed-
ded in a disturbance composed of a low rank Gaussian clutter
and a white Gaussian noise. In this context, it is interest-
ing to use an adaptive version of the Low Rank Normalized
Matched Filter detector, denoted LR-ANMF, which is a func-
tion of the estimation of the projector onto the clutter sub-
space. In this paper, we show that the LR-ANMF detector
based on the sample covariance matrix is consistent when the
number of secondary data K tends to infinity for a fixed data
dimension m but not consistent when m and K both tend to
infinity at the same rate, i.e. m/K → c ∈ (0,∞). Using
the results of random matrix theory, we then propose a new
version of the LR-ANMF which is consistent in both cases.
The application of our new detector on STAP (Space Time
Adaptive Processing) data shows the interest of our approach.

Index Terms— Low rank detection, Random matrix the-
ory, G-MUSIC estimator, STAP processing, Adaptive Nor-
malized Matched Filter.

1. INTRODUCTION

In the context of target detection in a noise composed of a
low rank Gaussian clutter and an AWGN (Additive White
Gaussian Noise), one could use the Low Rank Normalized
Matched Filter (LR-NMF) detector [1] in order to exploit this
low rank structure. Although its full rank version (NMF de-
tector [2]) depends on the covariance matrix, the LR-NMF
detector only requires the projector onto the clutter subspace.
In practice, this projector and the covariance matrix are un-
known and it is necessary to estimate them usingK secondary
data which share the same properties as the tested data. It is
well known that the adaptive low rank version of the detec-
tor needs much less secondary data as its classical version
(ANMF detector [3]) for equivalent performances [4, 5].

Nevertheless, for high dimensional data, the performances
of the LR-ANMF detector can suffer of this reality. Further-
more, the LR-ANMF detector is composed of 3 quadratic
forms and, relying on [6], it is known that, although these
quadratic forms are consistent when the number of secondary
data K tends to infinity for a fixed length m of the data vec-
tor, they are no more consistent when the data length m also

tends to infinity. Hence, we show in this paper that the LR-
ANMF detector is consistent when K → ∞ with a fixed m
but it is no more consistent when m,K → ∞ at the same
rate, i.e. m/K → c ∈ (0,∞). By using the random matrix
theory and the Girko’s estimators [7], we propose to develop
a new LR-ANMF detector based on estimates of the quadratic
forms. These estimates are built from the G-MUSIC estima-
tor [8] which is designed to be consistent when the number of
secondary data K and the data dimension m both tend to in-
finity at the same rate. In this paper, we study the consistency
of this new LR-ANMF detector.

As an illustration of the interest of the proposed detector,
the STAP application [9] is studied as it is well known that the
disturbance is then composed of a low rank Gaussian clutter
plus a white Gaussian noise. Moreover, the dimension of the
STAP data is often large with respect to the available number
of secondary data.

The paper is organized as follows: Section 2 presents the
problem statement and the definition of the LR-NMF detec-
tor. Section 3 contains the demonstration outline of the incon-
sistency of the classical LR-ANMF detector when m/K →
c ∈ (0,∞). Then, the new version of the LR-ANMF detector
is presented and we study its consistency. Finally, Section 4
shows the STAP application which illustrates the obtained re-
sults.

Notations: An italic letter stands for a scalar quantity,
boldface lowercase (uppercase) characters stand for vectors
(matrices) and (.)H stands for the conjugate transpose. IN
is the N × N identity matrix, tr(.) denotes the trace opera-
tor and diag(.) denotes the diagonalization operator such as
(A)i,i = (diag(a))i,i = (a)i,i and equal to zero otherwise.

2. LOW RANK (LR) DETECTION

2.1. Problem formulation

The aim of the problem is to detect a complex signal d in an
additive noise c + n in the observation vector x ∈ Cm×1.
Hence, one can define the detection problem with the follow-
ing binary hypothesis test:{
H0 : x = c+ n xk = ck + nk, k ∈ [[1,K]]
H1 : x = d+ c+ n xk = ck + nk, k ∈ [[1,K]]

(1)
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where K is the number of secondary data, xk ∈ Cm×1 are
the secondary data (learning data used for the estimation of
the total noise covariance matrix) and n ∈ Cm×1 (or nk)
∼ CN (0, σ2Im) is the AWGN (Additive White Gaussian
Noise) complex vector. d is the target response and is equal
to αa(Θ) where α is an unknown deterministic parameter,
a(Θ) is the steering vector and Θ is an unknown determinis-
tic vector containing the localization parameters of the target.
The clutter c ∈ Cm×1 is modeled by a random centered
complex Gaussian vector with a covariance matrix C (c or
ck ∼ CN (0,C)). The covariance matrix is normalized as
tr(C) = m. Consequently, the covariance matrix of the
secondary data can be written as R = C + σ2Im ∈ Cm×m.
Moreover, the clutter is considered of low rank r (as in
a STAP application according to Brennan’s formula [10]).
Hence, rank (C) = r � m and one could write the eigende-
composition of C and define:

C =

r∑
i=1

γiuiu
H
i (2)

where γi and ui, i ∈ [[1; r]] are respectively the non zero
eigenvalues and the associated eigenvectors of C, unknown
in practice. The covariance matrix R of the secondary data
can be decomposed as:

R = [Ur U0]

[
∆r 0
0 ∆0 = σ2Im−r

]
[Ur U0]

H (3)

where ∆r and ∆0 are the diagonal matrices respectively
composed of the clutter and the noise eigenvalues, λ1 =
γ1 + σ2 > · · · > λr = γr + σ2 > λr+1 = · · · = λm = σ2.
Then, we define the projector onto the clutter subspace Πc

and the projector onto the orthogonal subspace to the clutter
subspace Π⊥c :

Πc = UrU
H
r =

∑r
i=1 uiu

H
i

Π⊥c = U0U
H
0 = Im −Πc =

∑m
i=r+1 uiu

H
i

(4)

2.2. LR-NMF detector

A filtering preprocessing on the observation vector x is first
done in order to remove the clutter, and we retrieve a com-
plex signal detection problem defined by the following binary
hypothesis test:{

H0 : r = UH
0 x = n0

H1 : r = UH
0 x = d0 + n0

(5)

The detection problem is solved considering the white noise
power n0 unknown. The used detection test corresponds
to the Normalized Matched Filter in its low rank version,
denoted by LR-NMF (Low Rank Normalized Matched Fil-
ter [1]):

ΛLR−NMF(Θ) =
|a(Θ)HΠ⊥c x|2

(a(Θ)HΠ⊥c a(Θ))(xHΠ⊥c x)

H1

≷
H0

δNMF
(6)

where
H1

≷
H0

δNMF means that the H1 hypothesis (respectively

H0) is decided if the test ΛLR−NMF(Θ) is over (respectively
under) the threshold δNMF.

3. LOW RANK DETECTOR FROM RANDOM
MATRIX THEORY

In this section, we will show the consistency of the LR-SCM
detector when K → ∞ with a fixed m and its inconsistency
when m,K →∞ at the same rate. Then, we will present an-
other estimator of quadratic form, named G-MUSIC, which
compose the detectors and coming from random matrix the-
ory. We will apply it to the LR-ANMF detector and, thus,
propose a new detector, named LR-GSCM, consistent when
K → ∞ with a fixed m and when m,K → ∞ at the same
rate.

3.1. Inconsistency of the LR-SCM detector

The traditional estimation of the total noise covariance matrix
R and the projector Π⊥c orthogonal to the clutter subspace are
first presented as, in practice, they are unknown. The estima-
tion is based on the Sample Covariance Matrix (SCM) which
is computed from theK secondary data and can be written as:

R̂SCM =
1

K

K∑
k=1

xkx
H
k =

r∑
i=1

λ̂iûiû
H
i +

m∑
i=r+1

λ̂iûiû
H
i

=
[
Ûr Û0

] [∆̂r 0

0 ∆̂0

] [
Ûr Û0

]H
(7)

where λ̂i, ûi, Ûr, Û0, ∆̂r and ∆̂0 are respectively the eigen-
values, the eigenvectors, the clutter subspace, the noise sub-
space and the diagonal matrices of the sample eigenvalues and
eigenvectors. Finally, the estimated projectors are:

Π̂c,SCM = ÛrÛ
H
r =

r∑
i=1

ûiû
H
i (8)

Π̂⊥c,SCM = Û0Û
H
0 = Im − Π̂c,SCM =

m∑
i=r+1

ûiû
H
i (9)

Then, using the SCM, the estimated LR-SCM detector can be
written as:

Λ̂LR−SCM(Θ) =

ΛLR−NMF(Θ) |Π⊥
c =Π̂⊥

c,SCM

H1

≷
H0

δSCM
(10)

Observing the LR-ANMF detector at Eq. (10) and (6), one
could note that each element is a quadratic form (sH1 As2)
which we will study their asymptotic consistence when K →
∞ and m fixed and when m → ∞ and K → ∞ at the same
rate m

K → c.
The convergence results are here presented under the fol-

lowing assumptions:
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(As1) The covariance matrix R has uniformly bounded spec-
tral norm for all m.

(As2) The two deterministic vectors s1, s2 have uniformly
bounded norm for all m1.

(As3) The SCM can take the form R̂SCM = R1/2VVHR1/2,
where R1/2 is a m × m Hermitian positive definite
square root of the true covariance matrix, and V is a
m×K matrix with i.i.d. absolutely continuous random
entries, each one of them having i.i.d. centered real
and imaginary parts with variance 1/(2K), and finite
eighth order moments.

(As4) The ratio m/K is chosen such as m/K < ξ where ξ is
defined at Eq.(20) of [6].

According to [6]-[8] and under the assumptions (As1-As4):
ηtrad = sH1 Π̂⊥c,SCMs2

a.s.−→
K→∞
m<∞

ηth = sH1 Π⊥c s2

ηtrad = sH1 Π̂⊥c,SCMs2
a.s.−→

m,K→∞
m/K→c<∞

η̄ = sH1 Π̄⊥c s2 6= ηth
(11)

In addition, Π̄⊥c =
∑m

i=1 w(i)uiu
H
i [6], with:

w(i) =


1− 1

m−r−1

r∑
n=1

(
σ2

λn − σ2
− µm

λn − µm

)
,

si i > r
σ2

λi − σ2
− µm

λi − µm
, si i 6 r

(12)

where µ1 > · · · > µm are the eigenvalues of diag(λ) −
1
m

√
λ
√
λ
T

and λ = [λ1, · · · , λm]T . Consequently, each de-
tector element is consistent when K → ∞ and m fixed and
inconsistent when m → ∞ and K → ∞ at the same rate
m
K → c. Furthermore, according to Slutsky’s theorem, the
ratio of these quantities and the LR-SCM detector are con-
sistent when K → ∞ with a fixed m but inconsistent when
m,K →∞ at the same rate.

3.2. Quadratic form from random matrix theory

In order to overcome this problem, we suggest using a con-
sistent estimator of our quadratic forms when m,K → ∞ at
the same rate. It is named G-MUSIC [8] and we have, under
the assumptions (As1-As4):

ηGSCM = sH1 Π̂⊥c,GSCMs2
a.s.−−−−−−−−−−−−→

m,K→∞,m/K→c
ηth (13)

where Π̂⊥c,GSCM is a pseudo-projector taking into account all
the estimated eigenvectors from the SCM and leading to a bet-
ter estimation of the quadratic form sH1 As2. It can be written

1In this paper, s1 and s2 take the values of a(Θ) or x (linear combinaison
of steering vectors a(Θ) and a white noise) which are independant of the
secondary data and consequently considered as deterministic vectors.

as Π̂⊥c,GSCM =
∑m

i=1 φ(i)ûiû
H
i [6], with:

φ(i) =


1 +

r∑
n=1

(
λ̂n

λ̂i − λ̂n
− µ̂n

λ̂i − µ̂n

)
, si i > r

−
m∑

n=r+1

(
λ̂n

λ̂i − λ̂n
− µ̂n

λ̂i − µ̂n

)
, si i 6 r

(14)

where µ̂1 > · · · > µ̂m are the eigenvalues of diag(λ̂) −
1
m

√
λ̂
√
λ̂
T

and λ̂ = [λ̂1, · · · , λ̂m]T . When c > 1, µ̂m =
· · · = µ̂K = 0.

3.3. LR-GSCM detector

Then, the new LR-GSCM detector is defined using Eq.(13):

Λ̂LR−GSCM(Θ) =

ΛLR−NMF(Θ) |Π⊥
c =Π̂⊥

c,GSCM

H1

≷
H0

δGSCM
(15)

The expression of δGSCM is not determined. One could point
out that the notation Π⊥c = Π̂⊥c,GSCM is not rigorous. Indeed,
Π̂⊥c,GSCM is not a projector but a pseudo-projector (function
of all the estimated eigenvectors instead of the eigenvectors
only corresponding to the desired subspace for a traditionnal
projector). We replace Π⊥c by Π̂⊥c,GSCM with the intention of
benefiting of a better estimation of the quadratic forms. Next,
following the same reasoning as for the LR-SCM detector,
we conclude from Section 3.2 that each element is consistent
when m,K → ∞ at the same rate. As a consequence, ac-
cording to Slutsky’s theorem, the ratio of these quantities and
the LR-GSCM detector are consistent when m,K → ∞ at
the same rate:

Λ̂LR−GSCM(Θ)
P−→

m,K→∞
m/K→c<∞

ΛLR−NMF(Θ) (16)

4. APPLICATION TO STAP PROCESSING

As an illustration of the interest of the LR-GSCM detector
(from the random matrix theory), the STAP processing appli-
cation is chosen. The purpose of STAP is to detect a moving
target thanks to a uniform linear antenna composed of N sen-
sors receiving M pulses. In this section, we choose N = 4
and M = 16 in order to have a large number for the data di-
mension m = NM = 64. In STAP application, Θ = (θ, v)
where θ is the DoA (Direction of Arrival) and v the object
relative speed. The target DoA and its relative velocity with
respect to the airborne (radar platform) velocity are θd = 0◦

and vd = 35m.s−1. According to Brennan’s formula, the
clutter rank is equal to r = N + (M − 1)β = 19, with
β = 1 in our configuration. Then, the signal wavelength is
l0 = 0.667m, the AWGN power is σ2 = 1, the signal to
noise ratio is SNR = 20dB and the clutter to noise ratio is
CNR = 40dB.
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We first compare two typical maps of the LR-SCM and
the LR-GSCM detector values as a function of the DoA and
the relative velocity in Fig. 1 and Fig. 2, for a given number of
secondary data K = 2r. We observe that, for both detectors,
the target is well detected. However, we also note a high di-
agonal in the LR-GSCM detector corresponding to the clutter
noise and due to the better estimation of the quadratic form
(a(θ, f)HΠ⊥c a(θ, f)). This phenomenon is also present on
the LR-SCM detector as illustrated in Fig. 3 where we ob-
serve a section of the detectors for θ = θd for a given number
of secondary data K = 2r. Consequently, this problem could
obstruct the detection as the values on this diagonal can be
higher than the value on the target. Since we know that it
is impossible to detect a target inside the clutter in both de-
tectors, we propose an alternative solution which forces the
detector elements corresponding to the clutter to be zero:{

Λ̂LR−ANMF−SCM(θ, f(β) sin(θ)) = 0

Λ̂LR−ANMF−GSCM(θ, f(β) sin(θ)) = 0
(17)

where β is a parameter of the radar system. We also apply the
same process to the LR-SCM detector for a fair comparison
between the detectors.

Fig. 1. LR-SCM detector value (dB) as a function of the DoA
and the relative velocity of the reflector object.

Now, we present some results with the proposed solution
of zero on the clutter diagonal. We first illustrate in Fig. 4 the
detection gain through the section of the detectors for θ = θd
for a given number of secondary data K = 2r. We remark
in Fig. 4 that the LR-GSCM detector leads to a gain of 0.15
in term of detector value with quite similar values outside the
main lobe.

Then, we illustrate the estimation gain with the MSE between
the LR-NMF detector and the estimated one (LR-SCM or LR-
GSCM) in θ = θd and v = vd in Fig. 5 as a function of the

Fig. 2. LR-GSCM detector value (dB) as a function of the
DoA and the relative velocity of the reflector object.

Fig. 3. Value of the LR-SCM and the LR-GSCM detectors for
θ = θd as a function of the relative velocity of the reflector
object.

number of secondary data K. The MSE is measured over
10,000 realizations. We note that the MSE between the LR-
NMF and the LR-GSCM detectors is lower than the MSE be-
tween the LR-NMF and the LR-SCM detectors, for all K. In
consequence, the LR-NMF detector is better estimated with
the proposed estimator than with the traditional one.

5. CONCLUSION

In this paper we developed a new adaptive low rank detec-
tor based on random matrix theory and more precisely on the

4
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Fig. 4. Value of the modified LR-SCM and the modified LR-
GSCM detectors for θ = θd as a function of the relative ve-
locity of the reflector object.

Fig. 5. MSE between the LR-NMF detector and the estimated
one at the target DoA and velocity.

G-MUSIC estimator. Indeed, the traditional low rank (LR-
SCM) detector, based on a simple eigendecomposition of the
SCM in order to estimate the projector onto the clutter sub-
space, is shown inconsistent when the number of secondary
data K and the data dimension m both tend to infinity at the
same rate. On the contrary, our new LR-ANMF detector is
consistent in this asymptotic regime. Moreover, we showed
the interest of our approach in a STAP application in terms of
MSE on localization parameters of the target.

The next future of this work is to compute the detection
and the false alarm probability in order to measure the im-
provement reached by our new detector.
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