
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

BAYESIAN MODEL SELECTION AND PARAMETER ESTIMATION

IN PENALIZED REGRESSION MODEL USING SMC SAMPLERS

Thi Le Thu Nguyen1, François Septier1, Gareth W. Peters2, Yves Delignon1
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ABSTRACT

Penalized regression methods have received a great deal of

attention in recent years, mostly through frequentist models

using ℓ1-regularization. However, all existing works assume

that the design matrix, that links the explanatory variables to

the observed response, is known a priori. Unfortunately, this

is often not the case and thus solving this challenging problem

is of considerable interest. In this paper, we look at a fully

Bayesian formulation of this problem. This paper proposes

the use of Sequential Monte Carlo samplers for joint model

selection and parameter estimation. Furthermore, a new class

of priors based on α-stable family distribution is proposed as

non-convex penalty for regularization of the regression coef-

ficients. The performance of the proposed methodology is

demonstrated in two different settings.

Index Terms— Model Selection, Bayesian Inference,

Regularization, SMC sampler

1. INTRODUCTION

Sparse regression analysis initially studied in the context

of penalized least squares or likelihood has gained increas-

ing popularity since the seminal paper on the LASSO [1].

Since this work, many approaches under both frequentist and

Bayesian have been proposed to extend these sparsity induc-

ing regression frameworks. In a frequentist setting the most

common choice is the ℓ1-regularization for the regression

coefficients β ∈ R
p known as LASSO, i.e. a penalty term

γ
∑p

i=1 |βi|. Under a Bayesian modelling paradigm, in which

the regression coefficients are treated as a random vector, one

may recover the LASSO estimates from the maximum a pos-

teriori (MAP) point estimator of the coefficients via a choice

of prior on the coefficients given by the multivariate Laplace

distribution, p(β) ∝ exp(−γ
∑p

i=1 |βi|). Unlike the garrotte

or the ridge penalties, the Laplace prior will produce truly

sparse solutions as γ increases. Finally, we note that from a

Bayesian perspective the use of MAP estimates is not exploit-

ing the full posterior information, see [2] and [3] who explore

full posterior distribution using a Laplace prior via Markov

chain Monte Carlo (MCMC).

A limitation in this approach is the use of identical penal-

ization on each regression coefficient. This can lead to unac-

ceptable bias in the resulting estimates [4]. Indeed, the classi-

cal ℓ1-regularization can lead to an over-shrinkage of large re-

gression coefficients even in the presence of many zeros. This

has resulted in sparsity-inducing non-convex penalties that

uses different penalty coefficients on each regression coeffi-

cient, i.e.
∑p

i=1 γi|βi| have been proposed, as have grouping

regularization constraints, see adaptive and sequential estima-

tion approaches in [5–8]. Alternative non-convex approaches

include the bridge regression framework, i.e. γ
∑p

i=1 |βi|
q

with q ∈ (0, 1), which leads to the ℓq-regularization prob-

lem [9]. Compared to previous non-convex prior, the latter

possesses the advantage of not introducing additional vari-

ables that need to be tuned.

In this work, we focus on the design of efficient algo-

rithms to fully explore the regression coefficient posterior dis-

tribution when a non-convex penalty functions with the same

penalty coefficient for each regression term are used. In [9],

an MCMC algorithm is proposed for the Bayesian Bridge re-

gression problem. Unfortunately, all existing Bayesian ap-

proaches assume that the possibly non-linear basis function(s)

required to link the input variables (explonatory variables) to

the observed response y is perfectly known. In this paper, we

propose an efficient Bayesian algorithm for the joint model

selection of these basis functions as well as the regression

coefficients under a non-convex penalized regression model.

Finally, we also introduce a new class of priors based on the

α-stable family. We contrast their performance w.r.t. regular-

ization against ℓq priors.

2. PROBLEM FORMULATION

2.1. Generalized Linear Models, the Exponential Family

and Basis Function Regression

We consider a widely utilized class of regression mod-

els known as the Generalized Linear Model (GLM) struc-

ture [10]. These represent a widely developed class of regres-

sion models, see discussions in [11, 12].

The GLM generalizes linear regression by allowing the

linear model to be related to the response variable via a

EUSIPCO 2013 1569746675
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link function and by allowing the magnitude of the variance

of each measurement to be a function of its predicted mean

value. Hence, the data consists of pairs (y1,x1), . . . , (yn,xn)
say, where yi is the response for the ith case in the dataset and

xi = (xi,1 . . . xi,p)
T

is the corresponding vector of explana-

tory variables. When specifying a GLM regression model one

must consider three aspects the distribution for the response,

the link function and the mean/variance relationships in terms

of the covariates.

A GLM model postulates that given xi, yi has some prob-

ability distribution with mean µi. We consider a general ba-

sis function regression structure in which we need to perform

model selection to assess the most suitable class of basis func-

tions and we will jointly perform regularization of the regres-

sion coefficients on the basis funtions to remove bases (trans-

formed covariates) which are not explanatory of the variation

in the response in a given model structure.

Consider for the k-th basis function model a function of

the GLM regression mean given by

g(µi) = Φk (xi)
T
β =

p
∑

j=1

βjΦ
j
k (xi,j) (1)

(= ηi, say) for some coefficient vector β = (β1 . . . βp)
T ,

a basis function regression design matrix Φk where each ele-

ment contains the basis function applied to the covariate cor-

responding to the i-th column Φj
k(xi,j) in which Φj

k : R 7→ R

and the first column containing 1 corresponding to the inter-

cept term. In specifying the function of the mean g(·) (known

as the link function) we must ensure it is selected to be strictly

monotonic and differentiable. Then one can say that after ap-

plication of the link function to the basis function linear model

ηi, forms the linear predictor for yi.

In addition, we will focus on distributional models for the

response Y ’s selected from the the exponential family. This

family of models contains many standard distributions allow-

ing for continous response distributions as well as discrete re-

sponse distributions such as the normal, exponential, gamma,

chi-squared, beta, Dirichlet, Bernoulli, categorical, Poisson,

Wishart, Inverse Wishart and many others. We illustrate in

Section 4 two choices from this GLM : Normal regression

model with identity link and Poisson regression model with

log link.

2.2. Bayesian Regularization and Priors

We consider the exponential power distribution used in the

Bayesian bridge regression (see [9]) and then we introduce

the symetric α-stable distribution as an alternative family of

regularizing priors.

Prior Class 1: Exponential Power distribution : Bridge

The exponential power distribution (EP ) with zero-mean is

defined as :

f(x; γ, q) =
q

2γΓ(1/q)
e(−|

x
γ |

q
). (2)

Prior Class 2: α-Stable distribution

We propose to study the use of the symetric α-Stable distri-

bution as a new class of prior distributions for the regression

coefficients. The α-stable distribution with characteristic ex-

ponent 0 < α = q < 2, dispersion parameter γ > 0, location

parameter δ and skewness parameter β ∈ [−1; 1], is only de-

fined through its characteristic function :

logφ(t) =

{

iδt− γq|t|q
[

1− iβsign(t) tan
(

qπ
2

)]

q 6= 1
iδt− γ|t|

[

1 + iβsign(t) 2
π
log |t|

]

q = 1

In this paper, we are particularly interested as a regularization

prior with the symmetric α-stable (SαS) distribution (δ = 0,

β = 0).

Comparison

Here we present plots of the negative log densities (i.e.

penalty function) for the α-stable distribution and the ex-

ponential power distribution, see Figure 1 for different values

of q. For q = 2, these two distributions are equivalent to

the normal distribution, producing a convex penalty (Ridge

regression). For q < 1 the penalty function from the ex-

ponential power distribution is non-convex whereas the one

from the symetric α-stable distribution is non-convex when

the characteristic exponent of the distribution is 0 < q < 2.

In particular, for q = 1, we can see the greater Kurtosis

and heavier tails provided by the stable distribution. As

mentioned previously, the relatively light tails of the expo-

nential power distribution prior is unattractive as it tends to

shrink large values of the coefficients even when there is

clear evidence from the likelihood that they corresponds to

large values. This is an important motivation for the class of

α-stable priors we introduce in this paper.

2.3. Bayesian Model Selection

We consider several families of non-nested regression mod-

els, each specified by the choice of basis function transform-

ing the covariates. We utilize regularization to remove non-

explanatory regressors and model selection for the most suit-

able choice of basis. To achieve this we perform Bayesian

model selection in which we aim to approximate p(Mk|y),
for each of the models k ∈ {1, 2, . . . ,K}, which corresponds

to the posterior model probability. Using Bayes’ theorem,

p(Mk|y) ∝ p(y|Mk)p(Mk) (3)

where p(y|Mk) denotes the marginal likelihood under model

Mk, also known as Bayes evidence, and p(Mk) corresponds

to the model prior. Moreover, we are also interested in es-

timating the parameters that define each model through the

parameter posterior p(θ|y,Mk). In the two examples con-

sidered in this study, the parameter is defined as

θ =

{ {

β, σ2
y, γ

}

Normal model

{β, γ} Poisson model
(4)

In these models, the two distributions of interest, i.e. the con-

ditional parameter posterior, p(θ|y,Mk), and the associated

marginal likelihood p(y|Mk) are intractable. Therefore, we
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(b) q = 1.5
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(d) q = 0.5

Fig. 1: Comparison of the penalty term induced by the log

prior of the regression coefficient to be either the exponen-

tial power distribution or the α-sable distribution (γEP =
2γSαS = 1)

resort to an Importance-Sampling (IS) based Monte Carlo so-

lution to jointly approximate these two quantities. This is a

challenge due to the high-dimension of the parameter θ, so

classical IS methods will be inefficient and produce high vari-

ance estimators. Consequently, we utilize a special class of

algorithms known as “Sequential Monte Carlo samplers”.

3. PROPOSED BAYESIAN SOLUTION

3.1. Introduction to SMC samplers

Here we describe briefly a special class of SMC algorithms

specifically designed to work in settings in which the se-

quence of target distributions to be sampled from are all

defined on the same fixed support, see discussions in [13,14].

This is different to standard SMC algorithms for state space

models (particle filtering) in which the sequence of distri-

butions evolves on a product space, and as a result requires

modification to the incremental importance sampling weight

expressions.

In short, the SMC sampler generates weighted samples

(termed particles) from a sequence of arbitrary distributions

πt, for t = 1, . . . , T , where πT may be of particular interest

and referred as the target distribution. Procedurally, this in-

volves mutation (or move), correction (or importance weight-

ing) and selection (or resampling). The final weighted parti-

cles at distribution πT are considered weighted samples from

the target distribution π.

In more detail, suppose that at time t − 1, the distribu-

tion πt−1 can be approximated empirically using N weighted

particles. These particles are first propagated to the next dis-

tribution πt using a mutation kernel Kt(θt−1; θt), and then

assigned new weights wt = wt−1Wt (θ1, . . . θt), where wt−1

is the weight of a particle at time t − 1 and Wt is the incre-

mental weight given by

Wt (θ1, . . . , θt) =
πt (θt)Lt−1 (θt; θt−1)

πt−1 (θt−1)Kt (θt−1; θt)
(5)

There is a range of possible things to consider when designing

an SMC sampler algorithm, the appropriate sequence of dis-

tributions, the choice of mutation kernel and then the optimal

choice of backward mutation kernel Lt−1(·; ·) (for a given

mutation kernel), see discussion on the optimal choices for

these components in [13]. In the context of the modelling

undertaken in this paper, we will utilize the SMC Sampler al-

gorithm to also perform model selection for the basis function

choices as detailed below.

3.2. Proposed SMC sampler

In this paper, we propose to use the SMC sampler on the ar-

tificial sequence of distributions {πt(θ)}
T

t=1 as follows:

πt(θ) ∝ p(y|θ,Mk)
φtp(θ|Mk) (6)

where conditioned on a specific model Mk, p(θ|Mk) is the

prior of the model parameters and φt is a non-decreasing tem-

perature schedule with φ1 = 0 and φT = 1. We thus sample

initially from π1(θ) = p(θ|Mk) directly and introduce the

effect of the likelihood gradually in order to obtain at this end

(t = T ) an approximation of the conditional parameter pos-

terior p(θ|y,Mk). As shown in [13], the marginal likelihood

of interest to make a decision regarding the basis function to

use can be approximated with SMC samplers as :

ZT = Z1

T
∏

t=2

Zt

Zt−1
≈

T
∏

t=1





Np
∑

i=1

wi
t



 (7)

where Zt =
∫

p(y|θ,Mk)
φtp(θ|Mk)dθ corresponds to the

normalizing constant of the target distribution at iteration t.
As a consequence the following procedure is performed :

1. For each model Mk, k ∈ 1, . . . ,Kmax : approx-

imate the conditional parameter posterior distribu-

tion p(θ|y,Mk) as well as the marginal likelihood

p(y|Mk) using Algo. 1.

2. Approximate the model posterior p(Mk|y) the model

posterior, via the approximation of p(y|Mk) and

model prior p(Mk) - Eq. (3).
Successive Random Walk Metropolis Hastings within Gibbs

proposal kernels is used for the mutation step of the algorithm

Kt(.; .·) by randomly partitioning the parameters vector θ into

B blocks.

4. NUMERICAL SIMULATION

In this section, we study the performance of the proposed

SMC sampler for joint model selection and parameter estima-

tion in two different settings from GLM. All results have been

3
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Algorithm 1 SMC Sampler Algorithm for Model Mk

1: Initialize particle system from the prior

2:
{
θ
i
1

}Np

i=1
∼ p(θ|Mk) and set

{
w̃i

1

}Np

i=1
= 1/Np

3: for t = 1, . . . , T do

4: Computation of the weights: for each i = 1, . . . , Np

wi
t = w̃i

t−1

πt(θ
i
t−1)

πt−1(θi
t−1)

= w̃i
t−1

p(y|θt−1,Mk)
φt

p(y|θt−1,Mk)φt−1

Normalization of the weights : w̃i
t = wi

t

[∑Np

j=1 w
j
t

]
−1

5: Selection: if ESS < Np/2 then Resample

6: Mutation: for each i = 1, . . . , Np : Sample θit ∼
Kt(θ

i
t−1; ·) where Kt(·; ·) is a πt(·) invariant Markov ker-

nel.

7: end for

8: The weighted particle system
{
θ
i
t, w̃

i
t|Mk

}Np

i=1
approximates

πt(θ) ∝ p(y|θ,Mk)
φtp(θ|Mk)

Model Expression Φi
k

M1 Linear x
M2 Gaussian exp(−(ρiri)

2)
M3 Inverse quadratic 1

1+(ρiri)
2

M4 Sigmoidal 1
1+exp(−ri/ρi)

M5 B-spline See [16] Order=2

M6 Mollifier

{
exp(− 1

1−(ρiri)
2 ) if |ρiri| < 1

0 otherwise

Table 1: Description of the different basis functions used in

the numerical simulation section - ri = ||x − ci|| defines

the ℓ1-norm between the input univariate variable and the i-th
center of the current basis - ρi is a scale factor.

obtained using the approach of Section 3 with the following

settings. Np = 500 particles and T = 50 iterations have been

used to approximate the sequence of distributions. A piece-

wise linear tempering schedule {φt} has been selected. The

sequence increased uniformly from 0 to 7/50 for the first 10

iterations, then from 7/50 to 20/50 for the next 20 and finally

from 20/50 to 1 for the last 20 iterations. This choice was

made to allow an initially slow evolution of the densities and

then to allow more complex densities to appear at a faster rate.

The different basis functions considered in this paper are

described in Table 1 with equally spaced centers ci on some

chosen bounded support of interest for the univariate input

variable x ∈ [−4; 12]. The following priors have been used:

p(Mk) = 1/K and an inverse-gamma prior for both γ and

σ2
y . Finally, in order to validate our proposed algorithm, the

results will be compared with the frequentist LASSO imple-

mented using the coordinate descent algorithm [15] and for

which the tuning parameter is obtained by a ten-fold cross-

validation procedure.

4.1. Normal Regression Model

In this first example, we have generated n = 40 observations

under model M2 (σ2
y = 2) with regression coefficients set to

zeros except β0 = 1, β3 = β15 = β24 = 5, β8 = β20 = −5

EP SαS LASSO

q = 1 29.13 28.98
133.69

q = 0.8 29.37 29.06

Table 2: Median of the mean squared error between true re-

gression coefficients and the estimated ones under the true

model M3 based on 50 replications.

and β5 = β17 = 3. For the basis functions (M2 to M6),

twelve equally spaced centers ci with 2 different scale param-

eters have been used. As shown in Fig. 2, the SMC sam-

pler is able to efficiently predict the unknown function even if

only few observations are available. As opposed to frequentist

LASSO, the proposed approach can give a confidence interval

on the predicted curve which is of great interest in many ap-

plications. Table 2 clearly shows the ability of the proposed

method to give an accurate estimate of the regression coef-

ficients. We can see a significant gain with proposed SMC

sampler. From Fig. 3, we can see the shrinkage effect on the

marginal posterior distribution on one true zero coefficient.

Finally, from Fig. 4, we study the model choice given by the

proposed SMC sampler. The model used to generate the data

is selected, thus validating the proposed procedure.
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Fig. 2: Regression in Normal regression with EP prior (q =
1): true function in blue - observed responses in green filled

circles - posterior mean from SMC under model M3 in red

and confidence region in gray (5% to 95% percentiles)
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Fig. 3: Comparison of the shrinkage results obtained with the

two different priors as q decreases (blue : q = 1.5, red : q = 1,

green : q = 0.8, black : q = 0.5)
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Fig. 4: Comparison of the approximation of the model poste-

rior (blue : SαS, red : EP )

4.2. Poisson Regression Model

In this second example, a Poisson regression model is con-

sidered. n = 100 observations have been generated with

M3. For the basis functions, 25 equally spaced centers ci
have been used with the same scale parameter. Fig 5 shows

the resulting mean predicted curve (and associated confidence

interval) obtained by using the proposed SMC sampler under

the true model. As in the previous case, the true curve is al-

ways within the confidence region. Table 3 presents the mean

squared prediction errors obtained by the proposed approach

by using the two different priors as well as the ones obtained

by the frequentist LASSO. The SMC sampler with the SαS
and q = 1 slightly outperforms the other ones.
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Fig. 5: Regression in Poisson regression with SαS prior (q =
1): true function in blue - observed count responses in green

filled circles - posterior mean from SMC under model M3 in

red and confidence region in gray (5% to 95% percentiles)

5. CONCLUSION

In this paper, we have proposed an efficient algorithm for

model selection and parameter estimation in penalized regres-

sion models based on SMC samplers. Moreover, we have pro-

posed a new class of priors based on α-stable family distribu-

tion that represents an alternative to exponential power dis-

tribution commonly used for ℓq-regularization. The proposed

methodology has shown promising results in two examples

from generalized linear models.

EP SαS LASSO

q = 1 q = 0.5 q = 1 q = 0.5

M1 17.4087 17.4370 17.2961 17.4117 17.3391

M2 2.7994 2.4939 2.3589 2.5132 3.4125

M3 2.6987 2.5305 2.4089 2.6344 2.5451

M4 3.0428 3.0087 2.9484 3.3708 3.3917

M5 3.3182 3.6683 3.2428 6.4821 4.3435

M6 3.0162 3.0104 2.9131 3.4356 3.1100

Table 3: Median of the mean squared prediction error for the

proposed approach using the different priors as well as the

LASSO estimate, based on 50 replications.
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