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ABSTRACT

We are interested in reconstructing signals sensed by wire-
less sensor networks over large areas with a great number of
nodes. Numerous constraints usually exist regarding power
consumption, communication bandwidth, computational ca-
pacity and data volume. By assuming that the sensed signal is
sparse in some transform domain we are able to exploit struc-
tures in the signal towards achieving coarser and easier-to-
deploy sensing grids. By tracking the statistics of the sensed
signal it is possible to achieve better performance. Unfortu-
nately traditional approaches like the Kalman filter are known
to fail when the signal is sparse. We propose the employ-
ment of a hierarchical Bayesian model in the tracking pro-
cess which succeeds in modelling sparsity. It is then possible
to achieve further reduction in the number of active sensors
by exploiting the temporal correlation of consecutive sam-
ples. The theoretical analysis provided solidifies the proposed
approach regarding convergence and also provides the con-
ditions under which all sparse signals are recovered exactly.
Simulations for synthetic and real-life scenarios show that the
proposed method succeeds in recovering time-varying sparse
signals with greater accuracy than traditional approaches.

Index Terms— dynamic sparse signals, Hierarchical
Bayesian Kalman filter

1. INTRODUCTION

When dealing with wireless sensor networks (WSN) spread
over a large area we come across some vital constraints.
Power consumption of each node rules the communication
rates between nodes, and also the local computational capac-
ity. Moreover, the number of nodes needed to achieve the
required performance places topological constraints on the
grid on which the nodes will be placed. Equally important is
the fact that an increasing number of sensors eventually leads
to an enormous volume of data for each time that the network
is sampled. Keeping a small number of active sensors is of
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primary importance. By assuming that the sensed signal is
sparse in some transform domain then we are able to exploit
the structure of the signal and achieve significantly smaller
numbers of active sensors compared to the traditional sam-
pling regime. By employing statistical information from past
time instants it is possible to accomplish further reduction
of the number of measurements by exploiting the temporal
relationship between consecutive samples.

If we focus on one time snapshot of the WSN then the
problem of sparse signal reconstruction can be solved by pro-
posed approaches in the field of compressed sensing (CS).
By following the Sparse Bayesian Learning (SBL) approach,
work in [1] is applied for CS in [2], and for basis selec-
tion in [3]. A Bayesian network was introduced which pro-
motes sparsity namely the Relevance Vector Machine (RVM).
Sparse solutions are promoted by a hierarchy of distributions.
This technique also provides estimates of full distributions.
The resulting statistical information can be used to make
sparsity-aware predictions. Most of the existing sparse re-
covery algorithms do not exploit statistical information of
the signal. There is also no need for a predetermined level
of sparsity as is usually the case with CS algorithms. The
RVM framework allows for automatic determination of the
active components and to be implemented with practical and
computationally efficient algorithms [4, 5]. These are key
issues for a WSN data fusion platform.

As we mentioned, in order to fully exploit the attributes of
the samples (temporal correlation as well as spatial sparsity)
we need to track the sensed signal. For this task traditional
approaches can be employed like the Kalman filter. Unfortu-
nately this method is not fit for sparse signals. The Kalman
filter requires that the mean value of the predicted states to
be equal with the mean value of the actual state while min-
imising variation. The Bayesian optimal estimator must be
retained and extended. By examining the formulation of the
filter it becomes evident that the model must be revisited. Ap-
proaches like the ones in [6, 7] attempt to enforce sparsity in
a conservative way without caring about the statistics either.
Something crucial to tracking. They also require specifying a
number of sensitive parameters. Something not always easy
to implement in real-world applications.

We propose the extension of the state-space model behind
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the Kalman filter with the hierarchy of distributions drawn
from the RVM. This results in a sparsity-favouring model of
the dynamic system. Since inference in such a dynamic sys-
tem will be based on the RVM inference procedure, it will
not suffer from external parameters that affect sparsity or ap-
plication dependent care. This internal modification results
in useful statistical information on the sparsity of the signal
which can be safely used in making safe predictions. The the-
oretical analysis provides the necessary backing for this idea
by extending previous results. Performance is demonstrated
empirically by applying the technique on Ozone data mea-
surements over the entire globe. This dataset is especially
interesting because measurements are incomplete.

The next section briefly lists the basic properties of the
Kalman filter and shows what are the key properties of SBL.
Then follows a discussion on previous work. In Section 3
we outline how this relates to the tracking problem, and the
revised prediction and update steps are given. Theoretical re-
sults are also presented. Finally we provide simulation results
in Section 4 on both synthetic and real-life scenarios.

2. SYSTEM MODEL

The dynamic system model is described by the following
equations:

xt = xt−1 + qt, (1)
yt = Φtxt + nt. (2)

Vector xt denotes the sparse signal to be recovered (or state
in the state-space dialect). The spatial samples from the WSN
for time instant t are gathered in a single vector yt. Signal xt
innovates according to qt and measurement noise is modelled
by nt. Without loss of generality we also assume that xt ∈
Rn is s-sparse and design matrix Φt ∈ Rm×n.

The classic state-space model in Equations (1) and (2) as-
sumes Gaussian distributions on the model parameters. Gen-
erally this does not favour sparse signals. By employing SBL
promotes sparse solutions for Equation (2).

2.1. The Kalman filter Bayesian optimal estimator

Kalman filtering is based on the Gaussian assumption so that:
p(xt|xt−1) = N (xt−1,Qt) and p (yt|xt) = N

(
Φxt, σ

2I
)

while p(qt) = N (0,Qt) and p(nt) = N
(
0, σ2I

)
. The

statistics of a dynamic signal are tracked by an iterative two-
step procedure: the Kalman filter prediction and update steps.
The prediction step calculates the parameters of p(xt|yt−1)
while the update step evaluates those of p(xt|yt). It can be
shown that both distribution functions are Gaussian. As a re-
sult, not only one can obtain the globally optimal estimate of
xt in terms of mean squared error (MSE), but also track the
full distribution exactly. It can be easily verified that the op-
timal estimate of the standard Kalman filter is typically not
sparse.

There are several approaches in which the Kalman filter
framework is externally modified to admit sparse solutions.
The essential idea behind [6] and [7] is to apply thresholds
that enforce sparsity. Work in [8] adopts a probabilistic model
but signal amplitudes and support are estimated separately.
Techniques presented in [9] use prior sparsity knowledge into
the tracking process. All these approaches typically require
a number of parameters to be pre-set. It also remains un-
clear how these methods perform towards model and param-
eter mismatch.

2.2. SBL: A hierarchy of distributions

We now focus on a single time instant of Equation (2). Note
that time index t is temporarily dropped. SBL was pro-
posed in [2] for compressed sensing. It was underscored in
Subsection 2.1 that if x ∼ N (0,Q) where Q is full rank,
then the minimum MSE solution to Equation (2) provided
by the Kalman optimal estimator is typically not sparse. In
SBL this issue is addressed by introducing individual hyper-
parameters αi to control the variance of each component
xi:

p (x|α) =
n∏
i=1

N
(
0, α−1i

)
= N

(
0,A−1

)
where matrix A = diag ([α1, · · · , αn]). Driving αi = +∞
results in p (xi|αi) = N (0, 0) which means that it is a pos-
teriori certain that xi = 0. Hence, the reconstruction prob-
lem is then changed to finding the maximum likelihood solu-
tion of α for the given measurements y. The explicit form
of the likelihood function p

(
y|α, σ2

)
was derived in [1]. A

set of fast algorithms to estimate α and subsequently x are
proposed in [5]. Even though the algorithms in [5] are not
guaranteed to produce globally optimal solutions, they per-
form extremely well for many practical scenarios.

We need to point out; there are no control parameters to
be manually set, like a predetermined sparsity level. A stop-
ping criterion is needed for the optimisation process and this
can be set to some safe threshold so as to not affect the va-
lidity of the process. This is of great importance for the pro-
posed method since the sparsity level of xt is unknown and
varying. Furthermore, the unknown state vector p(x|α) is a
Gaussian and this allows for convenient incorporation of the
SBL framework into the state-space model.

3. HIERARCHICAL BAYESIAN KALMAN FILTER

The Kalman filter and SBL are put together. The dynamic
system is still described by Equations (1) and (2). Measure-
ment noise is assumed to be Gaussian with known covariance
matrix, i.e. n ∼ N

(
0, σ2I

)
. Differently from the standard

Kalman filter where the covariance matrix Q of qt is given,
we assume that qt ∼ N

(
0,A−1t

)
where At = diag (αt) =

diag ([α1, · · · , αn]t) and hyper-parameters αi are not priorly

2
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known and will have to be learned from the observation vector
yt.

Similar to the standard Kalman filter the two steps of pre-
diction and update, still need to be performed at each time
instant. In the prediction step, one has:

µt|t−1 = µt−1, Σt|t−1 = Σt−1|t−1 +A
−1
t ,

yt|t−1 = Φtµt|t−1, ye,t = yt − yt|t−1. (3)

where the notation t|t − 1 means prediction at time instant t
for measurements up to time instant t− 1. In the update step,
one computes:

µt|t = µt|t−1 +Ktye,t,Σt|t = (I −KtΦt)Σt|t−1

Kt = Σt|t−1Φ
T
t (σ

2I + ΦtΣt|t−1Φ
T
t )
−1

In addition to these steps is the task of learning hyper-
parametersαt. From Equation (3), ye,t = Φtqt+nt where a
sparse qt is preferred to produce a sparsext. As per the analy-
sis in [1, 5], maximising the likelihood p(yt|αt) is equivalent
to minimising the following cost function:

L(αt) = log |Σα|+ yTe,tΣ−1α ye,t, (4)

where Σα = σ2I+ΦtA
−1
t ΦT

t . The algorithms described in
[5] can be applied to estimate αt. Note that the cost function
L(α) is not convex. The obtained estimate αt is generally
sub-optimal (details on the estimation of the globally optimal
αt are given in Section 3.1.) Nevertheless, this sub-optimal
solution is proved to be very useful in practice.

The HB-Kalman demonstrates several advantages over
previously proposed methods. Probably the most important
being the fact that one is able to have statistical information
on the sparsity of the signal. This retains the original nature
of the Kalman filter which follows the statistics of a signal
but acts on the sparsity of the signal. This is done through the
employment of hyper-parameters to model the innovations of
the signal. The HB-Kalman inherits the practicality of SBL
in determining the level of sparsity and is free from tedious
parameters like previous approaches. One only needs prior
knowledge of σ2 since in many real-world applications such
as WSNs the noise floor of the sensors is labelled. Also, in
Section 3.1 we demonstrate that this model allows us to draw
certain conclusions on global optimality.

3.1. Performance Guarantees

Again for convenience we drop subscript t and focus on Equa-
tion (2) where x ∼ N

(
0,A−1

)
. In [3] SBL was analysed for

basis selection. It had been proven that a maximally sparse
solution of y = Φx is attained at the global minimum of
the cost function. However, the analysis did not specify the
conditions to avoid local minima. By contrast, we provide a
more refined analysis and derive the conditions under which
the original inference algorithm in [5] converges to the global

minimum. Due to space constraints, only the main results are
presented and all detailed proofs are delayed to the journal
version of this paper.

In the performance analysis, we follow [3] by driving
noise variance σ2 → 0, which corresponds to the noiseless
setting. The following Theorem specifies the behaviour of
cost function L (α).

Theorem 1. For any given α, define the set I , {1 ≤ i ≤
n : 0 < αi <∞}. Then it holds that:

lim
σ2→0

σ2L (α) =
∥∥∥y −ΦIΦ

†
Iy
∥∥∥2
2
, (5)

where ΦI is a sub-matrix of Φ formed by the columns indexed
by I, and Φ†I denotes the Moore-Penrose pseudo-inverse of
Φ. Furthermore, if |I| < m and y ∈ span (ΦI), then
L (α)→ −∞ and σ2L (α)→ 0 as σ2 → 0.

One important conclusion is that the cases presented in
[3] are limiting cases of Theorem 1 for when L (α) → −∞.
Also and as can be seen, a proper scaling of the cost function
gives the squared `2-norm of the reconstruction error. This
is equivalent to recovering a support set that minimises the
reconstruction distortion which is the exact same principle as
in many greedy CS algorithms.

This theoretical analysis allows us to make the necessary
connections between SBL and already well established sparse
recovery algorithms. Actually it can be proven that the infer-
ence algorithm in [5] is closely related to the OMP algorithm
[10]. Further details are delayed to the journal version of this
paper. This firstly means that a global performance guarantee
can be drawn. This is stated in Theorem 2.

Theorem 2. Assume the noiseless setting y = Φx where the
columns of Φ ∈ Rm×n are normalised, i.e. φTi φi = 1 for all
1 ≤ i ≤ n. Suppose that the matrix Φ satisfies the incoher-
ence condition that

∣∣φTi φj∣∣ < 0.375/s for all 1 ≤ i 6= j ≤ n.
Then the sequential algorithm to solve the RVM inference
problem [5] reconstructs all s-sparse signals exactly.

Cost function in (5) suggests that it is possible to design
inference techniques based on more advanced CS reconstruc-
tion algorithms like the SP. The detailed algorithm design and
the corresponding performance guarantees are discussed in
the journal version of this paper. To summarise; it is possible
to track the temporal evolution of a sparse signal with an effi-
cient algorithm. This is possible by adopting a proper model
for the dynamic system. Our theoretical analysis shows that
further improvements can be achieved by studying the con-
nections between this algorithm and other CS methods.

4. EMPIRICAL RESULTS

4.1. Synthetic Data

We compare the original Kalman filter and the proposed
method, namely the Hierarchical Bayesian Kalman filter

3



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

0 20 40 60 80 100 120 140 160 180 200
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Time

R
e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r

Reconstruction Error Comparison

 

 

Kalman filter

BCS

HB−Kalman

(a) Number of active sensors m = 100
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(b) Number of active sensors m = 28.

Fig. 1. Tracking performance comparison.

(HB-Kalman). We also compare against the case where i.i.d
samples are assumed, i.e apply Bayesian compressed sensing
(BCS) [2] separately at each time instant.

Signal xt ∈ Rn is assumed to be sparse in its natural ba-
sis with support set S chosen uniformly at random from [1, n]
where n = 256. The non-zero entries of xt evolve according
to Equation 1 with Qi = σ2

qI with σ2
q = 0.1. The simu-

lation time for this experiment was T = 200 time instants.
At two randomly chosen time instants; t = 50 and t = 150, a
change in the support of xt is introduced. A non-zero compo-
nent is added to the support of x50 and a non-zero component
is removed from the support of x150. Apart from these two
time instants the support of xt remains stationary. At t = 1
the support is initialised with K = 30 non-zero components.
Measurement noise variance is set to σ2

n = 0.01 for the entire
simulation time.

Initially, sensors take noisy measurements yt by choos-
ing the entries of matrix Φt ∈ R128×256 to be drawn from
N (0, 1

m ) and to be re-sampled at each time instant. The num-
ber of active sensors at each time instant remains constant.
In Figure 1(a) the reconstruction error is plotted against time
for each of the three reconstruction methods. It is evident
that the error levels are much lower for the HB-Kalman fil-
ter when compared to the conventional Kalman filter, direct
consequence of the assumed sparse model. By comparing
to the repeated application of the BCS method, i.e assuming
i.i.d samples, we see that incorporating statistical information
from previous estimates results in lower reconstruction error.

In a more difficult setting we assume that the number of
active sensors in the network is reduced but the sparse sig-
nal to be sensed continues to evolve with sparsity levels well
above this number. More specifically the number of active
sensors has been reduced to m = 28 < 2 × 30 which is
less than twice the number of active components which is 30.

This is a particularly difficult case since the number of mea-
surements is less than what is required for exact reconstruc-
tion of the sparse signal. We assume that the sparse signal x0
is known beforehand. It is shown in Figure 1(b) that given
statistical information from an earlier time instant the filter
manages to retain its performance even-though it might take
slightly longer to converge.

4.2. Ozone distribution signal reconstruction

Here we test the proposed method on a real-life scenario. We
attempt to track the spatial distribution of Ozone over the
globe. The dataset on which we test the proposed method
is obtained from the Ozone Monitoring Instrument (OMI) on
the NASA Aura spacecraft [12]. This dataset is of particular
interest since the measurements for each day of the month are
incomplete due to the satellite’s trajectory. This can be seen
in Figure 2(a) by the blue vertical stripes. Furthermore we
assume that the data is sparse in the discrete cosine transform
(DCT) domain.

The original images are cropped to a square and under-
sampled by a factor of 8 so that m = 4275 in order to deal
with the high dimensionality of the data so as to be able to
perform the tests. This however does not hinder the perfor-
mance and does not affect the generality of the results. Each
time instant corresponds to one day of the month for a to-
tal of T = 28 days. Measurement noise variance is set to
σ2 = 0.16.

As can be seen from Figure 2(b), the standard Kalman
filter fails to accurately track the dynamic sparse signal. By
contrast, repeated application of the BCS method and the HB-
Kalman filter exhibit much lower error levels and accurately
reconstruct the missing data. The HB-Kalman outperforms
the BCS method as it incorporates statistical information from
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Fig. 2. (a) Atmospheric ozone distribution measured in (normalised) Dobson units. Original data shown on top. (b) Recon-
struction error for the period of one month.

past estimates resulting in lower reconstruction error.

5. CONCLUSIONS

We proposed a method for tracking dynamic sparse signals
and reducing the number of active sensors in a WSN by ex-
ploiting the spatial and temporal characteristics of the sensed
signal; a problem which can not be solved with traditional ap-
proaches like the Kalman filter. Theoretical analysis shows
that it is possible to improve upon existing techniques and in-
corporate them in the proposed framework. The robustness of
the technique is tested against synthetic and real-life scenarios
and is empirically shown to achieve better performance than
traditional methods.
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