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ABSTRACT
In this paper, we intend to present a new method to incorpo-
rate geometric shape prior into an edge-based active contours
in order to improve its robustness to partial occlusions, low
contrast and noise. The proposed shape prior is defined after
the registration, based on phase correlation, of binary images
associated with level set functions of the active contour and
a reference shape making the model invariant with respect to
Euclidean transformations. Experimental results on synthetic
and real images show the ability of the proposed approach to
constrain an evolving curve towards a target shapes that may
be occluded and cluttered under rigid transformations.

Index Terms— Active contours, shape prior, phase cor-
relation, rigid transformations

1. INTRODUCTION

Segmentation is a crucial step in image processing. Its role
is to partition the image into homogeneous regions. Active
contours [1, 2, 3, 4, 5] have been widely used in this field.
One can classify them into two families : The boundary-
based approach which depends on an edge stopping func-
tion to detect objects and the region-based approach which is
based on minimizing an energy’s functionnal to segment ob-
jects in the image. Region-based models are more robust than
boundary-based methods since the information of the whole
region is explored. However, they need more computations
and the region is restricted to be uniform and occlusion free.
Given that classical active contours are intensity-based mod-
els, there is still no way to caracterize the global shape of
an object. Especially in presence of occlusions and clutter, all
the previous models converge to the wrong contours. To solve
the above mentioned problems, different attempts incorporate
shape prior into the active contour models. Leventon et al.,
[6] associated a statistical shape model to the geodesic active
contours [3]. At each step of the surface evolution, the max-
imum a posteriori position and shape are estimated and used
to move globally the surface while local evolution is based
on image gradient and curvature. Chen et al., [7] defined an
energy’s functional based on the quadratic distance between

the evolving curve and the average shapes of the target ob-
ject after alignment. This energy is then incorporated into the
geodesic active contours. Bresson et al., [8] extended [7] ap-
proach by integrating the statistical model of shape proposed
by [6] in the energy functional. Fang and Chan [9] introduced
a statistical shape prior into the geodesic active contour to de-
tect partially occluded object. To speed up the algorithm, an
explicit alignment of the shape prior model and the current
evolving curve is done to calculate pose parameters. Foulon-
neau et al., [10] introduced a geometric shape prior into a
region-based active contours [5] based on the Legendre mo-
ments of the characteristic function and in [11], Charmi et al.,
defined a geometric shape prior for the region-based active
contours after alignment of the evolving contour and the ref-
erence shape. It’s well known that shape priors based on con-
tour alignment methods force these approaches to segment
only single object in the image and go without the contribu-
tion of level set, i.e. its ability to segment multiple objects at
once (see [8]). Besides, contour alignment methods are not
adapted to estimate the rigid transformation parameters in the
case of objects with holes (which often occurs in medical im-
agery like MRI brain’s white matter). This justifies the use
of the registration methods instead of those based on contours
alignment. In this work, we focus on adding a new geomet-
ric shape prior to an edge-based active contours [4] that use
the relative motion parameters between objects of the same
shape and have different pose, size and orientation, estimated
by phase correlation. We assume that the shape of reference
is known in advance (like the work of [10]). The improved
model can retain all the advantages of the level set approach
and have the additional ability of being able to handle the case
of images with multiple objects in presence of noise, partial
occlusions and low contrast. The remainder of this paper is
organized as follows : In Section 2, we will recall the used
shape registration method based on phase correlation. Then,
the proposed shape prior will be presented in Section 3. Ex-
periments will be presented and commented in order to study
the robustness of the model in Section 4. Finally, we conclude
the work and highlight some perspectives in Section 5.
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2. SHAPES REGISTRATION

We adopt the well know method of phase correlation in
Fourier space that is appropriate to estimate the translation
vector (see [12]) and for estimating the rotation angle and the
scaling factor, we use the proposed method of phase correla-
tion in Fourier-Mellin space. We brefiely recall this method
which is based on the Analytical Fourier-Mellin Transform
(AFMT), see [13] for a detailed description. A comparative
study with other global registration methods is presented in
[14]. Let f(r, θ) be a polar representation of the image with
the radius r according to the center of gravity of the image
to offset translation and θ the angle according to the hori-
zontal. It was pointed out in [15] that the crucial numerical
difficulties in computing the Fourier-Mellin transform of an
image might be solved by using the Analytical Fourier-Mellin
Transform (AFMT) given by

Mfσ (k, v) =
1

2π

∫ +∞

0

∫ 2π

0

f(r, θ)rσ−ive−ikθ
dr

r
dθ,

(1)
where σ > 0 is a fixed and strictly positive real number.
Since no discrete transform exists, three approximations of
the AFMT have been designed : the direct, the cartesian and
the fast algorithm (see [16]). Let fφref and fφ be two bi-
nary images associated respectively with level set functions
φref and φ. Denote by Mfσ,φref

and Mfσ,φ the AFMT of
respectively fφref and fφ with the same value of σ. fφref
and fφ have the same shape if and only if there is a similarity
(α0, β0) ∈ G = (R∗+, S

1) such that

∀(r, θ) ∈ G, fφ(r, θ) = fφref (
r

α0
, θ − β0), (2)

The action of planar similarities in Fourier-Mellin space leads
to

Mfσ,φ(k, v) = ασ−iv0 e−ikβ0Mfσ,φref
(k, v), (3)

By calculating the normalized cross-spectrum, only informa-
tion on phase difference will be preserved

Φ(k, v) =
M∗fσ,φref

(k, v)Mfσ,φ(k, v)

|M∗fσ,φref (k, v)||Mfσ,φ(k, v)|
= α−iv0 e−ikβ0 ,

(4)
Phase correlation of two images represented respectively by
fφref and fφ is defined as

CTfm(α, β) =

∫ +∞

0

∑
Z

Φ(k, v)αiveikβdv, (5)

We can deduce the images transformation’s parameters (α, β)
by estimating (α0, β0) that maximize the correlation func-
tion CTfm. Having the parameters of rigid transformation
between the two binary images. We perform the registration

of the image fφref according to the following formula [17]

fregφref
(x, y) =

αfφref ( (x−a) cos θ+(y−b) sin θ
α , −(x−a) sin θ+(y−b) cos θ

α ),
(6)

where (a, b) represents the translation vector, θ the rotation
angle and α is the scaling factor. On the resulting image
(Fig.1), the pixels in black (resp. white) correspond to pos-
itive areas (resp. negative) of the signed distance map which
is associated to level set function. The image on the right of
Fig.1 shows the product function given by

fprod(x, y) = fregφref
(x, y) · fφ(x, y), (7)

By construction, the function fprod is negative in the areas of

Fig. 1. Left : fregφref
,Middle : fφ, Right : fprod.

variability between the two binary images (occlusion, clutter,
missing parts etc.) whereas in positive regions, the objects are
similar. Thus, in what follows, we propose to update the level
set function φ only in regions of variability between shapes to
make the evolving contours overpass the spurious edges and
recover the desired shapes of objects. This property recalls
the Narrow Band technique used to accelerate the evolution
of the level set functions [4].

3. THE PROPOSED SHAPE PRIOR

Geometric active contours are iterative segmentation methods
which use the Level Set approach [2] to determine the evolv-
ing front at each iteration. Working with level set approach
makes it possible to manage topology changing of the con-
tour like splitting and merging, and consequently the segmen-
tation of an arbitrary number of objects in the image. In [4],
the level set approach is used to model the shape of objects
with an evolving front. The evolution’s equation of the level
set function φ, which is the embedding function associated to
the active contour, is

φt + F |∇φ| = 0, (8)

F is a speed function of the form F = F0 +F1(K) where F0

is a constant advection term equals to (±1) depending of the
object inside or outside the initial contour. The second term
is of the form −εK where K is the curvature at any point and
ε > 0, is a constant real. To detect objects in the image, the
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authors proposed the following function which stops the level
set function’s evolution at the object boundaries

g(x, y) = 1
1+|∇Gσ∗f(x,y)| , (9)

where f is the image and Gσ is a Gaussian convolution fil-
ter of standard deviation σ. This stopping function has values
that are closer to zero in regions of high image gradient and
values that are closer to unity in regions with relatively con-
stant intensity. Hence, the discrete evolution equation is

φn+1(i,j)−φn(i,j)
∆t = −g(i, j) F (i, j) |∇φn(i, j)|, (10)

It’s obvious that the evolution is based on the stopping func-
tion g which depends on the image gradient. That’s why this
model leads to unsatisfactory results in presence of occlu-
sions, low contrast and even noise. To make the level set func-
tion evolves in the regions of variability between the shape of
reference and the target shape, we propose the new stopping
function as follows

gshape(x, y) =

{
0, if ψ(x, y) >= 0,
sign(φref (x, y)), else,

(11)

where ψ(x, y) = φ(x, y) · φref (x, y), φ is the level set func-
tion associated to the evolving contour, while φref is the level
set function associated to the shape of reference after registra-
tion. As it can be seen, the new proposed stopping function
only allows for updating the level set function in the regions
of variability between shapes. In these regions gshape is either
1 or -1 because in the case of partial occlusions, the function
is equals to 1 in order to push the edge inward (deflate) and
in case of missing parts, this function is equals to -1 to push
the contour towards the outside (inflate). This property re-
calls the Balloon snake’s model proposed by Cohen in [18]
in which the direction of evolution (inflate or deflate) should
be precised from the beginning. In our work, the direction of
evolution is hundled automatically based on the sign of φref .
The total discrete evolution’s equation that we propose is

φn+1(i,j)−φn(i,j)
∆t =
−(wg(i, j) + (1− w)gshape(i, j)) F (i, j)|∇φn(i, j)|,

(12)
where w is a weighting factor between the image-based force
and knowledge-driven force.

4. EXPERIMENTAL RESULTS

We will start by presenting the robustness of the proposed
shape prior to constrain the evolution of an active contour to-
wards a given shape, then the proposed model will be applied
to the segmentation problem.

4.1. Robustness of the proposed shape prior

To illustrate the ability of the proposed shape prior to con-
strain geometrically an active contour, we experiment first the

evolution of the contour under the influence of the proposed
shape prior term only (i.e. w = 0). We present in Fig.2 an
example of successive evolutions between several shapes of
different topologies. We have chosen for initial curve a green
square. The first shape of reference is a tree leaf. An inter-
mediate step in this evolution is shown by the first row and
the final curve (when convergence is reached) is presented by
the last column. This last configuration of the contour is used
as an initial curve for the next experiment by taking the im-
age of the left and right ventricles of the heart as a reference
and then finally in the same way by taking the shape of a pen
and a ring as shapes of reference. This simulation shows that
the proposed shape prior can well constrain an active contour
to take a given shape (known as reference) and handling non
trivial geometric shapes with holes and complex topologies.

Fig. 2. Curve evolution under the proposed shape prior only.

4.2. Application to the segmentation problem

In this section, the proposed model with shape prior will
be applied to the segmentation problem. Consequently the
model will evolves under both data and prior terms. In order
to reduce the computational complexity and to have a good
estimation of the parameters of the rigid transformation as in
[9, 10], we first evolve the active contour without shape prior
until convergence (i.e. w = 1). This first result provides an
initialization for the model with prior knowledge. To promote
the convergence to the target shape, we give more weight to
prior knowledge (generally w <= 0.5). In the next experi-
ment, we compare our model to that proposed by Fang and
Chan in [9]. The shape of reference is provided by image (a).
Images (b) and (c) represent repectivelly the results obtained
by our model and the model of Fang and Chan. It is visually
clear that in region of variability (occlusion), the proposed
approach gives a better result. By the second row, we han-
dle a situation where the object to be detected is no longer
connected (due to missing parts or hole). In such situations,
methods based on contours alignment does not allow to es-
timate the parameters of the rigid transformation (rotation
and scale). Thanks to registration by phase correlation, our
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Fig. 3. (a) : The reference, (b) : Result obtained by our model,
(c) : Result obtained by Fang and Chan model, (e) : Segmen-
tation without shape prior, (f) and (g) : Segmentation with the
proposed model.

model can handle this case and consequently the detection
of the target object. In Fig.4, the case of real image with
several objects under partial occlusion and different types of
noise (Gaussian, Salt and Pepper and Speckle) is considered.
Segmentation without shape prior fails to detect the famil-
iar objects (second image of first row). However, using the
shape prior, the proposed model succeeds in segmenting the
desired objects (third image of first row). For the second row,
a rotation of −90◦ with differents kind of noise are applied.
Results seems to be satisfactory. In what follows, our model

Fig. 4. Segmentation of real image with several objects under
partial occlusion and noise.

is applied to medical images obtained from Brain Web Sim-
ulated Data Base1. We focus on the segmentation of white
matter that may contain holes depending on the slice. The
reference images are provided by the first row (slices 56, 58
and 62). We have chosen to initialize the model for different
slices with a simple rectangle (green curve). The obtained
results without the constraint of shape included in the model
are presented in the third row. Starting with these results and
after the registration step, final segmentation based on shape
prior knowledge and image-based information is presented by
the last row. The table below shows the value of RMSE (Root

1http://mouldy.bic.mni.mcgill.ca/brainweb/

Fig. 5. Segmentation of brain white matter.

Mean Square Error), execution time until convergence and
the time for parameters estimation (in seconds) of the rigid
transformation for different values of w and this for slice 56.
The images size is 256 x 256. We set the total number of
iterations equals to 500. The prior knowledge is introduced
at the iteration 400 for different values of w. Fig.6 presents

w RMSE Execution time Motion estimation time
1 0.549 24.563 -

0.8 0.237 26.264 0.430
0.4 0.230 27.009 0.470
0.1 0.222 24.798 0.375
0 0.216 27.161 0.526

Table 1. Variation of the RMSE and the execution time de-
pending on the weighting factor w.

the variation of the RMSE depending on the weighting factor
w for slices 56, 58 and 62. We note that with a low weight of
the shape constraint, the proposed model arrives to constrain
the contour evolution towards the reference shape. Given
these encouraging results, we plan in future work to apply
our model in a medical context for the extraction of target
structures based on medical atlas.

5. CONCLUSION

To summarize, new method of geometric active contours with
shape prior is presented in this research. The proposed model
is able to constrain the evolving curve to be similar to a given
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Fig. 6. Variation of the RMSE depending on the weighting
factor w for slices 56, 58 and 62.

template. This approach uses the registration of binary images
associated to level set functions of respectively the evolving
contour and a reference shape by phase correlation. Exper-
iments have shown the ability of the newly added term to
improve the robustness of the detection process in presence
of textured background, missing parts and partial occlusions
of the target objects. The addition of shape prior has not in-
creased significantly the execution time given that the pro-
posed approach does the registration only once and it is done
by the Fast Fourier Transform unlike [10] where at each iter-
ation shape descriptors are calculated for a given order. As
future perspectives, we are working on applying our model in
the context of medical application where the shape of refer-
ence is given by medical atlas in order to aid in the diagnosis.
Also, we plan to extend this approach to more general trans-
formations such as affine transformations.
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