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ABSTRACT
In this paper, we consider the problem of distributed
sequential estimation of time invariant parameters in a
network of cooperative agents. We study a system where
the agents quantify their respective beliefs in the unknown
parameters by approximations of the posteriors of the
parameters with multivariate Gaussians. At every time instant
each agent carries out three operations, (a) it receives private
measurements distorted by additive noise, (b) it exchanges
information about its belief in the estimated parameters with
its neighbors, and (c) it updates its belief with the new
information. Since we consider distributed processing in
the network, it is challenging to provide an optimal strategy
where the agents update their believes using the Bayes’ rule
in every iteration. In this work, instead, we propose a
method which does not process the data based on Bayes
theory and yet allows the agents to reach asymptotically the
optimal Bayesian belief held by a fictitious fusion center. We
provide convergence analysis of the method and demonstrate
its performance by simulations.

Index Terms— Distributed estimation, Bayesian estimation,
consensus algorithms, cooperative agents,

1. INTRODUCTION

In this paper we propose a distributed algorithm for sequential
estimation in a connected network of cooperative agents.
In the network, any two neighboring agents have a perfect
bidirectional communication. At each time instant, every
agent receives private observations with information about
time invariant parameters of a linear model. The observations
are distorted by additive Gaussian noise. The agents quantify
their beliefs in the unknown parameters by their respective
posteriors of the parameters, which are approximated by
multivariate Gaussian distributions. Since the agents are
cooperative, they exchange information about their beliefs,
and that allows them to modify their beliefs in the parameters.
We propose an information fusion/diffusion strategy that
permits the agents to reach asymptotically the same Bayesian

This work was supported by NSF under Award CCF-1018323.

belief held by a fictitious fusion center with access to all the
measurements of the agents.

The problem of Bayesian learning in cooperative networks
has been widely studied [1, 2, 3]. The objective there is
that the agents asymptotically reach the performance of a
Bayesian fusion center by cooperation. In this paper, we focus
on distributed estimation. Various algorithms for distributed
estimation have been proposed, some of them based on
diffusion [4, 5] and others on consensus strategies [6, 7].

Our work can be viewed as an extension of [7] and [8] to the
sequential scenario. The proposed method is an extension of
the running consensus presented in [9], where the sequential
averaging problem of scalars is considered. In comparison to
the work in [9], this paper develops a method where every
agent’s belief is a function of two matrix statistics, both
updated by the averaging consensus method. We analyze the
performance of the method theoretically and demonstrate its
performance by simulations.

The paper is organized as follows. In the next section we
state the problem. In Section 3, we provide a brief review on
consensus algorithms and present the proposed method. We
prove that the method is unbiased and analyze its asymptotical
property in Section 4. Simulation results are given in Section
5, and concluding remarks in Section 6.

2. PROBLEM STATEMENT

We consider distributed estimation in a network of
cooperative agents Ai, i ∈ NA = {1, 2, ..., N}. The
connections among the agents are described by an undirected
graph G = (NA, E), where E is the set of edges of the
graph and where the agents Ai and Aj can directly exchange
information if and only if (i, j) ∈ E . In this paper, we assume
that the topology of the network is time invariant and that the
communication between agents is perfect.

We assume that ∀i ∈ NA, at any time instant t ∈ N+, Ai
observes a vector of data yi[t] ∈ RM×1 generated by the
following linear model:

yi[t] = Hi[t]θ + wi[t], (1)
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where θ ∈ RK×1 is a vector of unknown parameters of
interest, and wi[t] is observation noise modeled as a Gaussian
random vector with zero-mean and covariance Σi. We
assume that wi[t] is white in time and independent among
different agents. It is also assumed that both Hi[t] and Σi

represent private information known only to agent Ai. The
agents model their prior belief about θ by a noninformative
prior and the posterior by a multivariate Gaussian. At
every time instant, every agent exchanges quantities with its
neighbors, which the agents use together with the private
signals to update their beliefs in θ.

If there exists an ideal, centralized fusion center with access
to all yi[t], Hi[t] and Σi, at time instant t its belief about θ is
the posterior of θ. By Gauss-Markov Theorem, this belief is
a multivariate Gaussian distribution [10], i.e.,

βfc[t] = p(θ|Ifc[t])

= N
(
θ̂fc[t],Cfc[t]

)
, (2)

where N(·, ·) denotes a multivariate Gaussian distribution, the
subscript fc emphasizes that the statistics belong to the fusion
center, Ifc[t] represents all the information up to time instant
t, which includes yi[τ ], Hi[τ ] and Σi, for each i ∈ NA and
τ ∈ {1, 2, · · · , t}, and where

θ̂fc[t] =

(
t∑

τ=1

N∑
i=1

Pi[τ ]

)−1( t∑
τ=1

N∑
i=1

si[τ ])

)
= D−1fc [t]ηfc[t], (3)

with Pi[τ ] ∈ RK×K and si[τ ] ∈ RK×1 being defined by

Pi[τ ] = Hi[τ ]
>Σ−1i Hi[τ ],

si[τ ] = Hi[τ ]
>Σ−1i yi[τ ],

and

D−1fc [t] =

(
t∑

τ=1

N∑
i=1

Pi[τ ]

)−1
, (4)

ηfc[t] =

t∑
τ=1

N∑
i=1

si[τ ]. (5)

The K ×K covariance matrix Cfc[t] is given by,

Cfc[t] = D−1fc [t], (6)

where the matrix Dfc[t] is referred to as the precision matrix.

3. DISTRIBUTED ESTIMATION

An examination of (3) reveals that in a distributed setting
every agent will have the same belief as a fusion center if

it can obtain the summation of all Pi[t]s and si[t]s. Hence,
we cast the problem as one of distributed summation of
sequential data. Note that the computation of (3) requires
knowledge of the total number of agents in the network.
This number, however, can be obtained by running a separate
consensus algorithm. In this section we propose the method
where agents can asymptotically achieve the belief held by the
fusion fusion center by cooperation with neighboring agents.

We propose that at every t, each agent Ai keeps one matrix
Di[t] ∈ RK×K and one vector ηi[t] ∈ RK×1 to approximate
the two statistics in (3) held by the fusion center, i.e., Di[t] ≈
Dfc[t] and ηi[t] ≈ ηfc[t].

At t = 0, all the elements of Di[0] and ηi[0] are initialized to
be zero. Let qij ∈ R be a non-negative weight that agent Ai
assigns to its neighbor Aj . Then with the matrix Q ∈ RN×N
we represent all the weights of all the agents in the network.
At time t, any Ai, i ∈ NA, after exchanging information with
its neighbors, updates its statistics by

Di[t] =
N∑
j=1

qi,jDj [t− 1] +NPi[t]

= N
t∑

τ=1

N∑
j=1

φi,j [t− τ ]Pj [τ ], (7)

ηi[t] =
N∑
j=1

qi,jηj [t− 1] +Nsi[t]

= N
t∑

τ=1

N∑
j=1

φi,j [t− τ ]sj [τ ], (8)

where φi,j [t] ∈ R denotes the element in the ith row and
jth column of Qt. We propose that Ai forms its belief
βi[t] about θ as a multivariate Gaussian distribution, i.e.,
βi[t] ∼ N(θ̂i[t],Ci[t]), where

θ̂i[t] = D−1i [t]ηi[t], ∀i ∈ NA, ∀t ∈ N+, (9)

and

Ci[t] = D−1i [t], ∀i ∈ NA, ∀t ∈ N+. (10)

We remark that if φi,j [t] =
1

N
, ∀i, j ∈ NA and ∀t ∈ N+,

every agent will perform as well as the fusion center. Aiming
at achieving this goal, we require that the weight matrix Q
satisfies the following three conditions:

1>Q = 1>, Q1 = 1, ρ
(
Q− (1/N)11>

)
< 1,

(11)

where 1 denotes anN×1 column vector with all of its entries
equal to one, and ρ(·) is the spectral radius of the matrix inside
the parentheses.
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According to [11], it holds that

lim
t→∞

Qt =
1

N
11>, (12)

and
lim
t→∞

φi,j [t] =
1

N
, ∀i, j ∈ NA. (13)

Throughout this paper, we assume that the matrix Q is
symmetric and that it satisfies the three conditions in (11).

4. ANALYSIS

In this section, we first examine the bias of the estimates of
the proposed method. The following theorem maintains that
the estimates of the agents are unbiased.

Theorem 1 Under the conditions listed in the statement of
the problem, ∀i ∈ NA and ∀t ∈ N+, the estimate in (9) held
by agent Ai at time t is unbiased, i.e.,

E θ̂i[t] = θ. (14)

Proof : The theorem can be proved by mathematical
induction. At time t = 1, ∀i ∈ NA, we have

E θ̂i[1] = E
(
D−1i [1]ηi[1]

)
= E

(
(NC−1i [1])−1(NC−1i [1]θ̃i[1])

)
= E θ̃i[1] = θ. (15)

Assuming that at time t we have E θ̂i[t] = θ , ∀i ∈ NA, then
at time t+ 1,

E θ̂i[t+ 1] = E
(
D−1i [t+ 1]ηi[t+ 1]

)
= D−1i [t+ 1]

(∑N
j=1 qi,jDj [t]E (θ̂j [t])

+ NPi[t+ 1]E
(
P−1i [t+ 1]si[t+ 1]

))
= D−1i [t+ 1]

(∑N
j=1 qi,jDj [t] +NPi[t+ 1]

)
θ

= D−1i [t+ 1]Di[t+ 1]θ = θ, (16)

where the second equality is due to the fact that ηj [t] =

Dj [t]θ̂j [t], the third equality is because the local estimates
are unbiased (i.e., EP−1i [t+1]si[t+1] = θ), and we assume
E θ̂j [t] = θ in the inductive step. 2

With the second theorem, we show that the belief of every
agent will converge to the global optimal obtained by a
fictitious fusion center.

Theorem 2 Let the conditions listed in the statement of the
problem hold and let Σi and Hi[t] be bounded ∀i ∈ NA.
Then by the proposed method, the Kullback-Leibler (KL)
divergence between any agent’s belief βi[t] and the belief of

the fictitious fusion center βfc[t] converges to zero as time
goes to infinity, i.e.,

lim
t→∞

DKL

(
βi[t]

∣∣∣∣∣∣βfc[t]) = 0, ∀i ∈ NA. (17)

Proof : According to the definition of KL-divergence between
two multivariate Gaussian distributions, we have that the
sufficient conditions for (17) are given by,

lim
t→∞

(
θ̂fc[t]− θ̂i[t]

)
= 0 ∀i ∈ NA, (18)

and
lim
t→∞

Dfc[t]D
−1
i [t] = I ∀i ∈ NA, (19)

where 0 ∈ RK×1 is a vector of K zeros, and I is the K ×K
identity matrix.

By (9), we rewrite the estimates held by agent Ai at time
instant t as,

θ̂i[t] = D−1i [t]ηi[t]

= (Di[t]−Dfc[t] + Dfc[t])
−1

×
(
ηi[t]− ηfc[t] + ηfc[t]

)
= (Ei[t] + Dfc[t])

−1(εi[t] + ηfc[t]), (20)

where Ei[t] = Di[t]−Dfc[t] and εi[t] = ηi[t]− ηfc[t]. By
using similar reasoning, we write,

Dfc[t]D
−1
i [t] = Dfc[t](Ei[t] + Dfc[t])

−1. (21)

With the assumption that Σi[t] and Hi[t] are bounded ∀i ∈
NA, we have that all the covariance matrices Ci[t] are
bounded and positive definite. Therefore, we have that
Dfc[t] =

∑t
τ=1

∑N
i=1 C−1i [τ ] is unbounded as t goes to

infinity. Also, note that the estimate θ̂fc[t] in (3) converges
to θ as t goes to infinity, and therefore it holds that ηfc[t] is
also unbounded when time t goes to infinity. As indicated in
(20), since θ̂fc[t] = D−1fc [t]ηfc[t], it is sufficient to show that
∀i ∈ NA, both Ei[t] and εi[t] are bounded to get (18) and
(19).

By (3), (7), and (8), we have,

‖Ei[t]‖ =

∥∥∥∥∥∥
t∑

τ=1

N∑
j=1

(Nφi,j [t− τ ]Pj [τ ]−Pj [τ ])

∥∥∥∥∥∥
≤

 t∑
τ=1

N∑
j=1

φi,j [t− τ ]− t

NP[t], (22)

and

‖εi[t]‖ =

∥∥∥∥∥∥
t∑

τ=1

N∑
j=1

(Nφi,j [t− τ ]sj [τ ]− sj [τ ])

∥∥∥∥∥∥
≤

 t∑
τ=1

N∑
j=1

φi,j [t− τ ]− t

NT [t], (23)
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where ‖ · ‖ denotes the Euclidean-norm, and

P[t] = max
j∈NA,τ∈{1,··· ,t}

‖Pj [τ ]‖ ,

T [t] = max
j∈NA,τ∈{1,··· ,t}

‖sj [τ ]‖ .

Since we have that both C[t] and T [t] are bounded, we next
show that gi[t] =

∑t
τ=1

∑N
j=1 φi,j [t− τ ]− t is bounded for

all i ∈ NA. We construct a vector g[t] with elements gi[t] as
follows:

g[t] =
t∑

τ=1

Qt−τ1−
t∑

τ=1

11>

N
1, (24)

where 1 ∈ RN×1 denotes a vector of ones. By the properties
of the 2-norm, we have

‖g[t]‖ =

∥∥∥∥∥
t∑

τ=1

Qt−τ1−
t∑

τ=1

11>

N
1

∥∥∥∥∥
=

∥∥∥∥∥
t∑

τ=1

(Q− 11>

N
)t−τ1

∥∥∥∥∥
≤

t∑
τ=1

∥∥∥∥(Q− 11>

N
)

∥∥∥∥ t−τ
∥∥∥1∥∥∥, (25)

where the second equality is due to the fact that Q is doubly
stochastic and the matrix I − 11>

N is a projection matrix and
the relation ≤ is due to the property of the Euclidean-norm.
Since Q is assumed to be symmetric, then Q− 11>

N is also a
symmetric matrix whose spectral radius is equal to its 2-norm.
Hence we have,

‖g[t]‖ ≤
√
N

t∑
τ=1

ρ
(
Q− 11>

N

)t−τ
. (26)

Noting that ρ
(
Q − 11>

N

)
< 1, we have proved that the

Euclidean-norm of s[t] is bounded as t goes to infinity, which
shows that every element gi[t] is also bounded ∀i ∈ NA and
∀t ∈ N+. With this, the proof of (18) and (19) is completed,
and thus, the main claim of the theorem with (17). 2

5. SIMULATION RESULTS

In this section, we present simulations of the proposed algo-
rithm and numerical comparisons between the convergence
rate of agents with different number of neighbors. In all the
experiments, the multi-agent system was modeled as a ran-
dom geometric graph G(NA, E) [12], where the N agents
were chosen uniformly and independently on a square of size
1 × 1. Each pair was connected if the Euclidean distance
between the nodes was smaller than r(N), where r(N) =√

log(N)
N due to connectivity requirement.

In all the experiments, we set Q to be the updating matrix
of the average consensus algorithm [13], which has the
following form:

Q = I− εL, (27)

where I ∈ RN×N is the identity matrix, L is the Laplacian
matrix of the random graph G, and ε ∈ R is a coefficient
satisfying ε < 1/maxi(deg(i)), ∀i ∈ NA, with deg(i)

denoting the degree of node i. Since ρ
(
Q − 11>

N

)
has a

smaller value when ε is larger, it can be expected that a larger
ε results in a faster convergence.

In the first experiment, N = 20, M = 5, K = 4,
t ∈ {1, 2, · · · , 100} and ∀i ∈ NA, ∀t ∈ N+, we set
the elements of Hi[t] ∈ R5×4 to be independent random
variables uniformly distributed on [2, 4], and set θ ∈ RK×1
to be normalized and whose elements were independent and
uniformly distributed. Also, ∀i ∈ NA we set Σi to be a
random M ×M matrix generated by a Wishart distribution,
where the scale matrix was the identity matrix I ∈ R5×5 and
the degrees of freedom were 15. As a performance metric
for the different methods, we used the mean KL-divergence
at time instant t (DKL[t]) defined as the average value of∑N
i=1 DKL

(
βi[t]

∣∣∣∣∣∣βfc[t]) /N over 500 implementations.

0 50 100 150 200 250 300
10−1

100

101

102

103

104

t

D̄KL [t]

Proposed method with ε1
Proposed method with ε2
Proposed method with ε3
non−cooperative method

Fig. 1. Asymptotical performance of the proposed method.

In this experiment, the network of agents implemented
the proposed method for 500 times with four different εs.
More specifically, we set ε1 = 0.9/maxi(deg(i)), ε2 =
0.5/maxi(deg(i)), ε3 = 0.1/maxi(deg(i)), and ε4 = 0.
We recall that the case of ε = 0 corresponds to a non-
cooperative scheme. In each implementation, we recorded
the mean KL-divergence between the beliefs of agents and
that of the fictitious fusion center at every t. In Fig. 1, we
plotted the DKL[t] of the proposed method with different εs,
where the y-axis shows theDKL[t] in log scale and the x-axis
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represents time from 1 to 300. It can be seen that the mean
KL-divergence of our method for all positive εs converges to
zero with time, whereas the one related to the noncooperative
method, does not. Also, we can see that larger values of ε
yield faster convergence.

In the second experiment, we compared the performance
of agents with different degrees when they implement the
proposed method. In the random network we chose an agent,
referred to as A1, with degree 5, another agent, A2, with
degree 9, and a third agent, A3, with degree 1. At each
time instant t, every agent receives the information generated
by the linear model described in the experiment one and it
implements the proposed method using the update matrix Q
with ε1. For comparisons, we defined the performance metric
D
i

KL[t] by the average value ofDKL

(
βi[t]

∣∣∣∣∣∣βfc[t]) /N over

500 trials. In Fig. 2., we plotted the evolution of D
i

KL[t] of
these three agents respectively, where it shows that the agent
with the largest degree has the fastest convergence.

0 50 100 150 200 250 300
10−1

100

101

102

103

104

t

D̄i
KL [t]

deg(A1)=5

deg(A2)=9

deg(A3)=1

Fig. 2. Comparison between the evolution of belief held by
agents with different degrees.

6. CONCLUSION

An important challenge for cooperative agents is efficient
processing of sequential private information and information
received from their neighbors. In this paper we presented one
approach of addressing this problem when the observations
of the agents are generated by a Gaussian linear model and
the objective is that the agents reach the posterior about the
linear parameters of the model given the global information.
We proved that with the proposed method, the estimates held
by the agents are unbiased. We also showed that the belief
of every agent asymptotically reaches the Bayesian belief of
a fusion center. The computer simulations demonstrated that

the agents had performance that is predicted by the theoretical
analysis of the method.
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