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SPATIALLY SPARSE SPATIO-SPECTRAL FILTERS FOR FEATURE EXTRACTION IN BMI

APPLICATIONS

Ibrahim Onaran N. Firat Ince

Department of Biomedical Engineering, University of Houston, TX 77204 USA

ABSTRACT

The common spatio-spectral pattern method is an ex-

tension of the traditional common spatial pattern technique

that combines spectral filtering with the original spatial fil-

tering. All recording channels are combined when extracting

the variance as input features for a brain machine interface.

This results in overfitting and robustness problems of the

constructed system in presence of high number of channels.

Here, we construct spatially sparse common spatio-spectral

pattern method in which only a subset of all available chan-

nels is linearly combined when extracting the features. We

utilized a modified version of the recently introduced re-

cursive weight elimination technique to select a subset of

electrodes for spatio-spectral projections. We evaluate the

performance of the proposed method to distinguish between

the movements of the first three fingers of the hand using

electrocorticogram signals of the brain computer interfaces

competition 2005. We observed that spatially sparse spatio-

spectral filter outperforms both original common spatial

pattern and non-sparse spatio-spectral filter and results in

improved generalization in classification.

Index Terms— Common spatial filters, common spatio

spectral filters, brain computer interfaces, sparse projections.

1. INTRODUCTION

The functions of human hand such as grasping, lateral hip,

pinch, etc. has a vital role in every aspect of the activities

of the daily living. Due to interrupted neural pathways or

amputation of upper limb, several people lose their hand

function and have limitations in the activity of daily living.

The brain controlled prosthetic hand, a neuroprosthetics, may

bring many opportunities to the life of such subjects and can

help them to regain their hand function.

Recent advances in electrode design and recording tech-

nology make it possible to record neural activity from many

channels which can be used to control such hand prosthetics.

With the increase in the number of channels, researchers can

record signals from larger area of the brain or from smaller

area with very high dense channel placement. This increases

This research was supported in part by The National Science Foundation,
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the computational demand of the neural decoding algorithms.

To decrease the computational complexity of the processing

step and increase the signal to noise ratio of the neural data,

common spatial pattern (CSP) is widely used as a feature ex-

traction technique in brain machine interface (BMI) applica-

tions. The CSP algorithm is also simple to implement for both

invasive and noninvasive multichannel neural data [1, 2]. The

common spatio-spectral pattern (CSSP) method of [3] is an

extension of the traditional CSP that combines spectral filter-

ing with the original spatial filtering. Although both CSP and

CSSP methods are successfully used in various brain com-

puter interface (BCI) applications they generally overfit the

data when the number of training trials is limited [4, 5]. The

sparseness of the spatial filter might have an important role to

increase the robustness and generalization capacity of the de-

coder of the BMI system. Therefore, in the past years there is

a growing interest on the construction of sparse spatial pro-

jections, so called sparse CSP methods, which use a lim-

ited number of channels for feature extraction [6–8]. It has

been shown that such methods are superior to their non-sparse

counterparts in terms of generalization capability [6–9].

In this paper, we construct spatially sparse spatio-spectral

filters and study the performance of them in a BMI appli-

cation. In particular, we utilized recently introduced recur-

sive weight elimination (RWE) method [9] to select a subset

of electrodes to generate spatio-spectral projections on multi-

channel invasive neural data. In order to investigate its gener-

alization accuracy, we used this method as a feature extraction

engine for the classification of electrocorticogram (ECoG) re-

lated to the movements of three different fingers. Such a de-

coder is expected to drive a robotic hand with three fingers.

We show that spatial sparsification of the spatio-spectral fil-

ters increases the classification accuracy dramatically. In the

next section we first refer to the details of the traditional CSP

method and then show the relation between the spatio-spectral

filtering with the original CSP formulation. Next, we describe

the RWE method which is used to construct spatially sparse

spatio-spectral projections. Finally we provide experimental

results and our conclusion.
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2. MATERIALS AND METHODS

2.1. Traditional CSP Method

In the CSP framework, the spatial filters are a weighted linear

combinations of recording channels, which are tuned to pro-

duce spatial projections maximizing the variance of one class

and minimizing the other. The spatial projection is computed

using

XCSP = WTXi

where the columns of W are the vectors representing each

spatial projection and Xi is the multichannel ECoG data of

the ith trial.

The CSP algorithm creates variance imbalance to maxi-

mize the variance ratio of two different classes. The variance

ratio is called Rayleigh quotient (RQ) [1] and can be written

in the form of

RQ(w) =
wTAw

wTBw

where A and B are the covariance matrices of two classes and

w is the spatial filter that we would like to find.

Maximizing RQ can be expressed as an optimization

problem as in the following equations.

maximize
w

wTAw

subject to wTBw = 1.
(1)

To solve the optimization problem expressed in Equation

1, we use Lagrange multipliers method [10] to obtain the

equivalent problem in the form of Aw = λBw which is gen-

eralized eigenvalue decomposition (GED) of the covariance

matrices A and B. The solutions (w) to this problem are the

joint eigenvectors of A and B and λ is the associated eigen-

value for the corresponding joint eigenvector.

2.2. Common Spatio-Spectral Filters (CSSP)

The common spatio-spectral pattern (CSSP) method of [3]

is an extension of the traditional CSP that combines spectral

filtering with the original spatial filtering. The multichannel

data for the ith trial is denoted as Xi ∈ RC×N where C is the

number of channels and N is the number of samples. First

by considering only one coordinate in time, a delayed trial is

obtained Xi,m, m ∈ [0, . . . ,M ], where m denotes the de-

lay index and M is the amount of maximum delay. Then the

traditional CSP algorithm is employed on the enlarged space

that is obtained by concatenating the original channels and

the channels which have delay indexes from 1 to M . There-

fore, in this enlarged space the size of the covariance matrices

are C(M + 1), hence, the length of the spatio-spectral filters.

The projection is obtained from a particular delayed data as

follows

Yi =
M∑

m=0

WT
mXi,m

Here, Wm denotes the collection of spatial filters that is ap-

plied to signal which is delayed with the amount of m. It

should be noted that the filter weights in Wm are obtained

from the GED solution of the enlarged covariance matrices.

Since each time sample of the spatially filtered signal Yi is

expressed as the linear combination of the original signal and

its delayed versions, the whole process described so far can

be interpreted as an application of the CSP algorithm to the

finite impulse response (FIR) filtered multi-channel neural

data, hence, it is named as common spatio-spectral pattern

(CSSP). The advantage of this approach is that it extracts the

spectral (frequency) information from the data that is spe-

cific to the subject and the channel. This advantage on the

other hand comes with an additional (delay) parameter, M ,

to be tuned during the training phase. Moreover, the enlarged

space, which results in a much larger covariance matrix of

size C(M +1) while solving the GED, causes overfitting and

reduces the generalization capability of the classifier. There-

fore, in practice a single delay is used which corresponds to

a dimensionality of 2C [3]. As expected, this short filter also

yields poor spectral resolution.

These drawbacks led us to find a spatially sparse solution

to increase the robustness and generalization capability of the

CSSP method with higher order spectral filters. In more de-

tail, only a small number of channels with several temporal

delays will be used to extract features. However, finding such

a subset is infeasible and computationally complex. Conse-

quently, a fast technique is needed to eliminate unnecessary

channels. In the past few years, several greedy methods based

on ℓ0 norm such as backward elimination (BE), forward se-

lection (FS) were proposed to find sparse spatial filters [6].

However, they have high computational complexity when the

number of channels is high. Therefore, we used a modified

version of recursive weight elimination method as described

in [9]. It has been shown that the RWE has dramatically

lower computational complexity and provides similar classi-

fication accuracy compared to other ℓ0 norm based greedy

sparse methods [9].

2.3. The Recursive Weight Elimination

The recursive weight elimination (RWE) approach is inspired

from the work of Guyon et al. [11] which employs recursive

feature elimination in an SVM framework. They assume that

the coefficients of the weight vector are related to their con-

tribution to the maximum margin of the SVM. Therefore they

eliminate features iteratively corresponding to the minimum

of the weight vector. Along the same line as [11], the RWE

method assumes that the coefficients of the spatio-spectral fil-

ters are related to their contribution to the RQ. In this scheme,

the RWE algorithm starts with a full size covariance matrices

of the traditional CSP method. In the very first step, RWE

solves general CSP problem and finds the weight vector w.

The absolute value of the coefficients in w is sorted and the
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channel associated with the smallest value of the weight vec-

tor is eliminated. In the next step, the GED solution is ob-

tained from the remaining channel set. This elimination pro-

cedure is iterated until the method reaches the desired car-

dinality (number of channels used in final projections). It is

worth noting that using sparseness in CSSP framework was

attempted in [12]. We have to emphasize that in [12] sparse-

ness is sought in the length of the spectral FIR filter which

was allowed to be arbitrarily long. On the contrary, we are

seeking sparseness in the spatial domain.

In our exploration the goal is to analyze the effect of the

sparseness in CSSP as a function of the number of chan-

nels. For this particular purpose, we modify the RWE search

method such that a channel and its delayed versions are elim-

inated at each step. This is accomplished as follows. After

solving the GED on the enlarged covariance matrices, the ab-

solute value of the weight vector is computed. Then, for each

channel the value corresponding to the maximum over its de-

layed weight indexes is stored. In the following step, as in

the original RWE, the stored maximum values are sorted in

descending order and the channel associated with minimum

value is eliminated along with its delays. The procedure is

iterated until desired cardinality over channels is reached. We

also investigated the effect of the number of the maximum

amount of delays (M) of the spectral filters in classification.

In our experiments M ranged from 0 (regular sparse CSP

method) to 6.

2.4. ECoG Dataset

We applied the sparse CSSP method on multiclass ECoG

of BCI competitions IV. The ECoG data was recorded from

three subjects during finger flexions and extensions [13] with

a sampling rate of 1 kHz. The electrode grid was placed

on the surface of the brain. Each electrode array contained

48(8× 6) or 64(8× 8) platinum electrodes. The finger index

to be moved was shown with a cue on a computer monitor.

The subjects moved one of their five fingers three to five times

during the cue period. The ECoG data of each subject was

sub-band filtered in the frequency range of (40 − 200 Hz).

We used 1 s data following the movement onset in the anal-

ysis. The dataset contains around 146 trials for each subject.

In this paper, we applied sparse CSSP filter to discriminate

between the movements of three fingers only as they can

achieve almost all the functionality that five fingers realize,

and therefore widely used in robotic hand design [14] due to

light weight requirements.

The signal was transformed into four virtual channels by

taking first and last two eigenvectors of the GED solution. Af-

ter computing the outputs of these four spatio-spectral filters,

we calculated the energy of the output signal and converted

it to log scale and used them as input features to lib-SVM

classifier with an RBF kernel [15]. Since we are tackling a

multiclass problem, we used the pairwise discrimination strat-
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Fig. 1. The average classification errors over three subjects

for different cardinalities and delays. The last column reflects

the errors for full CSSP method. Note that the top right entry

is the classification error of the traditional CSP method.

egy of [2] for the three-class finger movement data. In other

words, we constructed spatially sparse spatio-spectral filters

tuned to contrast pairs of finger movements such as 1 vs. 2; 1

vs. 3; 2 vs. 3.

We studied the classification accuracy as a function of car-

dinality over channels and the amount of delay of the spectral

filter. On the training data with the purpose of finding op-

timum sparseness level for the classification, we computed

several sparse solutions, with decreasing cardinality. The fil-

ters were extracted with cardinalities 40, 30, 20, 15, 10, 5, 2,

1. We also varied the filter delay (M) from 0 to 6 by keeping

all temporally delayed channels. Consequently, for zero delay

the covariance matrix size was 64 by 64 whereas for the filter

with 6 delays, the covariance matrix size had a dimensionality

of 448 by 448 (64 channels x 7 taps = 448). A five fold cross

validation was applied to the dataset to study the generaliza-

tion accuracy. The classification accuracies are averaged over

subjects.

3. RESULTS

In Fig. 1 the classification errors for different cardinality and

filter lengths are given. In Fig. 1, the last error points cor-

respond to the errors that are obtained by the original CSSP

method working on all channels. The first row reflects the

results that are obtained only from the spatial filters. Con-

sequently, the error rate on the last column of the first row

corresponds to the traditional CSP method. We observed that

the minimum classification error (3.3%) was obtained with a

cardinality of 5 and delay of 5. The standard CSP method

3
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Fig. 2. 6 taps (M=5) sparse CSSP filter for cardinality 5. The

effect of 40-200 Hz band filtering also included.

resulted in 15% error while distinguishing between the move-

ments of the 3 fingers. For the CSSP method the error rate

decreases with delays 1 and 2 and starts increase with delay

3. Using sparseness in the spatial domain improved the CSSP

classification performance considerably, especially when the

spatial filters are highly to moderately sparse. The best per-

formances are obtained by spatial filters that are considerably

sparse. Nevertheless, the spatially sparse CSSP method pro-

vided lower classification error rates for all delays. The stan-

dard CSP and CSSP methods had a minimum error rate of

15% and 10.1% (with a delay 2) respectively.

The frequency response of a filter obtained by spatially

sparse CSSP method at cardinality 5 and amount of delay 5

is shown in Fig. 2. Each line represents the frequency re-

sponse of a different channel. The effect of 40-200 Hz band

filtering also included in the plot. The spectral filters that are

formed by sparse CSSP are simply band-pass filters. The fil-

ters suppress the signal around 50 Hz and 160 Hz and tend to

select higher bands in 40-200 Hz range. The suppression and

amplification of the CSSP method for the indicated frequency

bands may have an important role to improve the classifica-

tion accuracies compared to traditional CSP method. We note

that the CSSP method spectrally filters the data for each chan-

nel and subject independently, so it creates subject and chan-

nel specific FIR filters. Consequently, spatially sparsifying

the CSSP solution also solves the overfitting problem.

4. CONCLUSION

The CSP and CSSP methods suffer from overfitting in the

presence of high density recordings with small amount of

training data. Since each delay expands the dimensionality

of the covariance matrices used in GED, the CSSP method

tends to overfit the training data more than the CSP method.

Here, we constructed spatially sparse CSSP method in which

only a subset of all available channels is linearly combined

when extracting the features. For this particular purpose, we

utilized a modified version of the recently introduced recur-

sive weight elimination (RWE) technique to select a subset of

spatio-spectral projections. We evaluate the performance of

the proposed method to distinguish the movement of the first

three fingers of the hand using electrocorticogram (ECoG)

signals of the BCI competition 2005. We observe that spa-

tially sparse spatio-spectral filters are superior to both original

CSP and CSSP.

5. REFERENCES

[1] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and

K.-R. Müller, “Optimizing Spatial Filters for Robust

EEG Single-Trial Analysis,” IEEE Signal Processing

Magazine, vol. 25, no. 1, pp. 41–56, 2008.
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