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ABSTRACT
This article provides a methodology for designing a proposal
distribution in the context of particle filtering for terrain nav-
igation. The suggested method is based on the use of an im-
portance distribution centered around an estimate of the max-
imum a posteriori (MAP). By assuming a Gaussian prior, we
show that the computation of the MAP can be reduced to an
optimization problem in a space of lower state dimension.
Furthermore, we introduce a new method for choosing the co-
variance of the proposal. In this case, numerical experiments
show that the method can improve upon classical sampling
methods.

Index Terms— Bayesian filtering, particle filtering, im-
portance sampling, proposal distribution, maximum a poste-
riori, terrain navigation, radar-altimeter, digital terrain eleva-
tion data

1. INTRODUCTION

The problem of terrain navigation has been addressed in re-
cent years via the use of non-linear filters such as the point
mass filter [1] and particle filters [2] [3]. The latter is a se-
quential Monte Carlo method based on importance sampling
that can in theory approximate any posterior distribution
thanks to a finite number of particles. The main ingredients
of particle filtering are a prediction step where particles are
sampled according to a prior distribution that incorporates
the dynamic model and a correction step that weights these
particles according to an observation provided by a sensor
through the use of a likelihood function. However, in the
case of a strong mismatch between the sampling distribution
and the weighting function, particle filters can diverge. To
avoid this, it is advocated in the filtering literature to sample
from an importance distribution that takes into account the
measurement in the prediction step.

The goal of this article is to provide a methodology for
choosing this importance distribution in the context of ter-
rain navigation. This distribution is based on the maximum

a posteriori (MAP). Since most navigation filters estimate at
least six components (position and velocity), we show how
the computation of the MAP can be reduced to finding a max-
imum in a two-dimensional space with the assumption that
the prior distribution is Gaussian. The performance is illus-
trated on a specific scenario where severe divergence may oc-
cur. Section 2 recalls the basics of particle of filtering in the
context of terrain navigation. Section 3 outlines the principle
of importance sampling and provides three different versions
of importance distributions. Section 4 is devoted to the deriva-
tion of the MAP under the hypothesis of a Gaussian a priori
and a partially linear observation equation. Finally, section 5
illustrates the benefits of a MAP based proposal in a static
setting as well as on a navigation filter scenario.

2. PARTICLE FILTERING IN THE CONTEXT OF
TERRAIN NAVIGATION

Consider an aircraft equipped with an inertial navigation sys-
tem (INS) which provides geographical position and veloc-
ity coordinates estimates as well as attitude components. The
systems suffer from increasing estimation errors or drifts over
time : it is essential to use an external sensor as a means of
correcting these errors. We will assume that the aircraft uses a
radar-altimeter as the external sensor and we are interested in
the problem of estimating the position and velocity given the
altimeter measurements. The radar-altimeter yields ground
clearance measurements that can be compared to a database
stored on board which will be referred to as the digital terrain
elevation database (DTED).

2.1. Dynamic and observation model

For the sake of simplicity we will not detail the hybridiza-
tion of the INS and state space representation. We re-
fer the reader to [2] for more information. Let xk =(
xk,1 xk,2 xk,3 ẋk,1 ẋk,2 ẋk,3

)T
be the state vec-

tor composed of the position and velocity coordinates. We
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assume a near constant velocity model.

xk = Fxk−1 +Gkwk−1 (1)

where

F =

(
I3 ∆I3
03 I3

)
Gk =

(
∆2

2 I3
∆I3

)
(2)

∆ is the sampling period, I3 is the identity matrix and 03 is
the 3 × 3 null matrix. The dynamic noise wk is a vector of
R3.

At each time step, the aircraft’s radar-altimeter measures
the ground clearance yk i.e the distance between the aircraft
and the ground according to the following equation

yk = xk,3 − hDTED(xk,1, xk,2) + vk = h(xk) + vk (3)

The term xk,3 is the absolute altitude while xk,1, xk,2 are the
horizontal position components and hDTED(xk,1, xk,2) is the
terrain height. vk is an additive measurement noise which
models the sensor imperfection. It is assumed that vk follows
zero mean Gaussian distribution with standard deviation σv .

In Bayesian estimation an estimator of the state xk is
obtained by approximating the filtering distribution pk =
p(xk|y0:k) where y0:k stands for the vector of measurements
from time 0 up to time index k. Particle filtering is a class of
sequential Monte Carlo algorithms that approximates pk via
a weighted mixture of Dirac measures.

pk ≈
N∑
i=1

ωikδxi
k

(4)

(
ωik
)
i=1...N

are the particle weights and the
(
xik
)
i=1...N

are
the so-called particles. To obtain the previous representation,
a prediction step allows the particles to evolve according to
the dynamics (1) and a correction step weights each xik ac-
cording to the likelihood function g(xk) = p(yk|xk). Sup-
pose a particle approximation given by

(
ωik−1, x

i
k−1

)
i=1...N

1. prediction : at time k sample xik according to p(xk|xik−1)

2. correction : compute the new weights according to
ωik = ωik−1g(xik)

3. normalize the weights ωik =
ωi

k∑N
j=1 ω

j
k

4. compute Neff = 1∑N
i=1 ω

i
k
2

5. if Neff < Nth, resample the particle set according to
high/low weights

The above algorithm constitutes the SIR (Sequential Impor-
tance Resampling) recursion. However, in practice after a
while particles tend to have a weight close to zero. The re-
sampling step is necessary to avoid this particle degeneracy

and consists in selecting the particles proportionally to their
weight wik so that only significant particles are duplicated and
those with negligible weight are discarded. The decision to
resample is made whenever the effective sample size Neff
falls below a certain predefined threshold Nth.

In practical applications, the SIR may not be able to track
xk successfully. Whenever the measurement noise is low,
sampling according to the prior proposal p(xk|xk−1) may be
inefficient since most particles will fall in regions where the
likelihood g(xk) is close to zero. A solution is to choose a
sampling distribution close to the posterior : the next section
recalls basics of importance sampling and suggests a new pro-
posal distribution.

3. CHOICE OF THE PROPOSAL DENSITY

In this section we consider a static setting where the unknown
state x is distributed according to a prior q and is observed
through a measurement y = h(x) + v, h being a non-linear
function.

As in the previous section, the likelihood is denoted g so
that the posterior p(x|y) ∝ g(x)q(x). Direct sampling from
p(x|y) generally not possible. Let P be the covariance of q.

3.1. Importance sampling

We wish to compute an estimate of the posterior p(x|y). The
importance sampling (I.S.) estimator p̂ of p(x|y) is obtained
by drawing samples xi from an alternative distribution q̃ so
that

p ≈
N∑
i=1

wiδxi
4
= p̂ (5)

where w̃i = g(xi)q(xi)
q̃(xi) are the importance weights and wi =

w̃i∑N
j=1 w̃

j .

Choosing a good importance distribution is crucial. In-
deed, the Monte Carlo error of the estimator p̂ is related to the
asymptotic variance Vq̃ of the normalized importance weights
wi [4].

Vq̃ =
1

N

 ∫ g2(x)q2(x)
q̃(x) dx(∫

g(x)q(x)dx
)2 − 1

 (6)

In case the prior q̃ and g have little overlap, most samples xi

have negligible weight and the above variance is high. Con-
versely, this variance is zero when q = p(x|y).

3.2. Design of an importance distribution based on the
maximum a posteriori

In light of the previous observation, we wish to design a pro-
posal distribution q̃ close to the posterior. One way to do this
is to use a Gaussian distribution centered on the mode x̂MAP

2
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of p(x|y) and with a covariance close to the posterior covari-
ance Cov(X|Y ). Two methods can approximate Cov(X|Y ):
Laplace’s method [4], the inverse of the observed Fisher in-
formation matrix evaluated at the MAP [5](see eq. (7) below)
denoted J−1(x̂MAP ) which is an approximation of Laplace’s
method. A necessary hypothesis is that the posterior be uni-
modal.

J(x) = −∂
2 log g

∂x2
(x)− ∂2 log q

∂x2
(x) (7)

Laplace’s method involves fourth order derivatives of h
whereas J−1 uses second order derivatives. To simplify this
even further we suggest the use of Cramer-Rao’s lower bound
where only the derivative ∂h

∂x is needed : indeed, the Cramer-
Rao bound CRB is linked to J via CRB−1 = EY (J).
However, the use of J−1(x̂MAP ) can result in bad estimates.
Indeed, if J−1(x̂MAP ) is too small w.r.t to P , qq̃ is unbounded
and the variance (6) can become infinite. To avoid this, we
suggest a Gaussian proposal q̃ centered around the MAP with
a covariance K that has eigenvalues greater than the prior
covariance eigenvalues. To design a proposal even closer to
the posterior, we propose that K be a rotated version of the
prior covariance P , i.e. such that the corresponding ellipsoid
has the orientation of that of J−1(x̂MAP ). In short, K has
the shape of P and the orientation of J−1(x̂MAP ).
If EJ is the matrix of eigenvector of J−1(x̂MAP ) and ΛP is
the matrix of eigenvalues of P , the orientation adjustment is
obtained by

K = EJΛPE
T
J
4
= P r (8)

The main difficulty is then to compute efficiently an estimate
of the MAP of a six-dimensional state (3 position compo-
nents, 3 velocity components).

4. MAXIMUM A POSTERIORI ESTIMATION
UNDER GAUSSIAN PRIOR ASSUMPTION

In this section we will show how it is possible to compute
an estimate of the MAP by assuming the a priori q density is
Gaussian.

The maximum a posteriori is defined by :

x̂MAP = arg max p(x|y)

where the a posteriori density p(x|y) ∝ p(y|x)q(x)
In some applications, the likelihood p(y|x) only depends

on a smaller part of x and can be broken down into a non-
linear part and linear part. Assume the state vector is decom-
posed into 2 sub-states x1 and x2 i.e. x = (xT1 , x

T
2 )T . Then

the measurement equation becomes

y = Ax2 − hl(x1) + v (9)

where hl is a non-linear function of x1.
In map aided terrain navigation, x1 is a two-dimensional vec-
tor of horizontal components of x and x2 includes the alti-
tude component as well as the three velocity components. The

measurement equation (3) does indeed have the form of equa-
tion (9) where A =

(
1 0 0 0

)
and hl = hDTED.

In the following, we will assume that the prior q(x1, x2)
is Gaussian with mean µ = (µT1 , µ

T
2 )T and covariance matrix

P =

(
P11 P12

P21 P22

)
and the likelihood p(y|x) is a zero mean Gaussian distribution
with covarianceR. Notice that the posterior may be expressed
as

p(x|y) α p(y|x1, x2)q(x1, x2) (10)
= p(y|x1, x2)q(x2|x1)q(x1) (11)

Using this factorization the maximization of the posterior
leads to :

max
x1,x2

p(x1, x2|y) ∝ max
x1

q(x1) max
x2

{p(y|x1, x2)q(x2|x1)}
(12)

The maximization can then be carried out by first maximizing
F1 (x1, x2) = p(y|x1, x2)q(x2|x1) w.r.t x2 which yields a
function of x1.
Maximizing F1 w.r.t x2 boils down to the minimization of the
following function w.r.t x2 :

Q(x1, x2) = (y + hl(x1) −Ax2)R−1 (y + hl(x1) −Ax2)T

+ (x2 − E1(x2)) Σ−1
2|1 (x2 − E1(x2))T

where E1(x2) = E(x2|x1) and Σ2|1 = Cov(x2|x1). We can
reorder the terms above so that :

Q(x1, x2) = Γ(x1) + (x2 − γ(x1)) Ω−1 (x2 − γ(x1))
T

(13)
where

Γ(x1) = (y + hl(x1) −Aγ(x1))R−1 (y + hl(x1) −Aγ(x1))T

+ (γ(x1) − E1(x2)) Σ−1
2|1 (γ(x1) − E1(x2))T

γ(x1) = Ω
[
ATR−1 (y + hl(x1)) + Σ−1

2|1E1(x2)
]

Ω =
(
ATR−1A+ Σ−1

2|1

)−1

The conditional expectation E1(x2) and covariance matrix
Σ2|1 can be worked out as :

E1(x2) = E(x2) + P21P
−1
11 (x1 − E(x1)) (14)

Σ2|1 = P22 − P21P
−1
11 P12 (15)

Since the function Γ does not depend on x2, the minimum
of Q w.r.t x2 is achieved in x̂2 = γ(x1). The next step to
maximizing the posterior p(x1, x2|y) is to substitute γ(x1) to
x2 in (13).

max
x1

q(x1) max
x2

{p(y|x1, x2)q(x2|x1)}

= max
x1

q(x1) exp(−1

2
Γ(x1))

(16)
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Maximizing q(x1) exp(− 1
2Γ(x1)) can be achieved through

numerical optimization methods. In the problem at hand, x1

is a two-dimensional vector representing the horizontal posi-
tion of the aircraft and the task of optimizing a function of
two dimension has a significantly inferior computation cost
than that of optimizing a 6-D function.
In a filtering setting, i.e. where we wish to estimate p(xk|y0:k)
sequentially, q = p(xk|y0:k−1). In order to evaluate the im-
portance weights wik ∝

g(xi
k)q(xi

k)
q̃(xk

i) , computing q(xik) can be
done by using a kernel density estimate of p(xk|y0:k−1). In
our filtering simulations, for simplicity we assumed a Gaus-
sian density q. The use of a Gaussian proposal has been in-
vestigated in [6] where the moments are estimated by an un-
scented filter. An other method is based on the local lineari-
sation of the optimal proposal density p(xk|xk−1, yk) [7] but
it requires the computation of a covariance for each particle.

5. SIMULATION RESULTS

5.1. Static scenario

We consider here the problem of estimating a vector x =
(x1, x2) in R2. The measurement function is given by a Gaus-
sian pdf h(x) = 1

2π|C|1/2 exp
(
− 1

2 (x−m)
T
C−1 (x−m)

)
where m = (1, 1)

T and C =

(
0.0075 0.0025
0.0025 0.0075

)
.

As usual, we assume that the observation equation takes the
form y = h(x) + v, where v ∼ N (0, σ2

v) and that x ∼
N (µ, P ).
The following values were used : µ = (0.94, 0.94)

T , P =(
0.0052 0.0012

0.0012 0.0022

)
, σv = 0.01.

We wish to compare the importance sampling estimates
of the posterior mean denoted by x̂N =

∑N
i=1 w

ixi obtained
by using the following proposals q̃:

1. q̃0 = q

2. q̃1 = N (x̂MAP , P ) where P is the prior covariance

3. q̃2 = N (x̂MAP , J
−1) where J defined in equation 7

4. q̃3 = N (x̂MAP , P
r) where P r is a rotated version of

P (see eq.(8))
The comparison of these choices of importance distribu-
tion is carried out by computing the root mean squared
errors (RMSE) E(

∥∥x̂N − x̂true∥∥2
)1/2 as a function of the

sample size N , using 100 independent runs. The value
x̂true = E(X|Y ) was computed by numerical integration.
The results are summarized in figure 1. The light blue line
corresponds to the distance between the MAP estimate and
x̂true. The value σv = 0.01 causes a mismatch between the
proposal and the posterior. It appears that the best estimator
is q̃3, centered on the MAP and with covariance obtained by
tilting the prior covariance P in the direction of the posterior

covariance which we approximate via (7) as can be seen in
figure 1. In contrast, the use of q̃2 does not guarantee the
convergence of the I.S. estimator as evidenced by the RMSE
plot.

Fig. 1. Comparison of proposals q̃ (σv = 0.01)

5.2. Application to terrain navigation

(a) Terrain elevation and aircraft trajectory (red line)

(b) RMSE of x̂1 vs time

Fig. 2. Navigation filter : comparison of the standard RPF
and RPF-MAP

We consider a navigation scenario where the aircraft will
suddenly encounter a canyon. In this case, as explained previ-
ously the information contained in the measurement function
is very high and most samples fall in a region where the like-
lihood is low. Instead of only sampling from the prior and
weighting by the likelihood, we propose the following adap-
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tation of the correction step which consists in sampling from
the proposal q̃3 defined in the previous section:

1. normalize the weights ωik =
ωi

k∑N
j=1 ω

j
k

2. compute Neff = 1∑N
i=1 ω

i
k
2 . If Neff < Nmin

• compute the empirical mean xk− and covari-
ance Pk− of the predictive distribution P̂ using(
ωik−1, x

i
k

)
, i = 1 . . . N

• compute x̂MAP as in 4 using a Gaussian approx-
imation N (xk− , Pk−) for q.

• sample xik ∼ q̃3 = N (x̂MAP , P
r
k−) where P rk− is

obtained by tilting Pk− as in 3.2 and compute the
weights wik =

g(xi
k)q(xi

k)

q̃3(xi
k)

3. resample if necessary

Nmin is a threshold that triggers the use of the MAP in the
correction step and can be different from the resampling
threshold.

The navigation filter implemented here estimates posi-
tion and velocity vector xk defined in section 2. The initial
state x0 follows a Gaussian distribution N (x̄0, P0) where
P0 = diag

(
1002 1002 1002 32 32 12

)
. The prior

mean x̄0 is sampled from a Gaussian distribution centered
around the true state with covariance P0. The dynamic
noise is a zero mean Gaussian distribution with covariance
Q = diag

(
12 12 0.52

)
. The radar altimeter measurement

noise is also a zero mean Gaussian with standard deviation
σv = 1m and the sampling period is ∆ = 0.1 s. The true
aircraft’s trajectory is straight and its duration is 14.5 seconds
(145 measurements).
We compared a standard regularized particle filter (RPF) [8]
with a version corresponding to the algorithmic description
above which we denote RPF-MAP. The comparison was
carried out using 150 independent runs using N = 2000
particles for the RPF-MAP and N = 4000 for the RPF
which insures comparable computational load.Each filter was
initialized with the same particle cloud. The RMSE of the
convergent runs was computed and the results are available
in figure 2. Out of the 150 runs, 67% were convergent for
the standard RPF whereas 85% converged for the RPF-MAP.
This illustrates the usefulness of the MAP and the covariance
rotation according to the orientation of Cov(X|Y ) as a way
of sampling in the region of interest to mitigate the divergence
phenomenon.

The algorithm, as currently formulated, assumes that the
particle cloud has a single mode at each time step. In early
stages of a typical navigation filter, this is generally not true.
However, it is possible to use a mixture model as in [9]:
p(xk|y0:k) =

∑L
l=1 αl,kpl(xk|y0:k) where each component

is approximately unimodal and make a Gaussian approxima-
tion for each pl . In this case, a local importance distribution

q̃l based on the local MAP can be used to sample more
efficiently.

6. CONCLUSION

In this article, we have provided a methodology for design-
ing an importance sampling method based on the maximum
a posteriori. The main contribution is the reduction of the di-
mension of the underlying optimization problem and the use
of a proposal centered on the MAP with a suitably chosen co-
variance. Simulations in a difficult terrain navigation setting
show the interest of this method. Still, it remains that in order
to take advantage of the developed method, it is necessary to
partition the filter into unimodal components .
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