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ABSTRACT
This paper focuses on the application of particle filtering
to tracking a single target by a network of mobile agents
using measurements affected by dynamic interferences.
The proposed solution is of general value and can be
applied to systems with limited resources, and constraints
on sensing modes, power and bandwidth utilization, and
algorithm complexity. The highlight of the method is on
its ability to handle multiple unknown dynamic sources
of interference by compensation, which does not require
prior information about the number of interferers, their
locations, mobilities and powers, and does not attempt direct
estimation of the number of interferers and their parameters
and dynamics. The solution relies on a model that introduces
a bias in the measurement equation that accounts for the
interference contributions. We provide simulation results
which demonstrate the performance of the proposed system.

Index Terms— Mobile target tracking, particle filtering,
interference compensation

1. INTRODUCTION

Target tracking by a network of mobile agents is of increased
interest due to recent advances in the field of robotics [1].
This problem poses a different set of challenges than that of
tracking with stationary sensor networks, and includes issues
related to where and how the processing of the measurements
of the sensors is carried out, along with who and how controls
the movement of the mobile agents.

In a previous work, we addressed the problem of tracking with
mobile agents where the agents are controlled by a central
unit. The central unit is also in charge of processing the
measurements made by each of the agents [2, 3]. The tracking
at the central unit is carried out by applying particle filtering
(PF) [4] or cost-reference PF [5, 6], which are methods
especially suitable to address the problem given its nonlinear
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nature. We have also proposed a completely different strategy
based on distributed processing [7]. There, each mobile agent
processes all the available measurements and the agents make
decisions without a central unit. These decisions include
determining if the mobile agents should start tracking a new
target, and if they start tracking, where they should move so
that successful tracking of the target is maintained. Within
this scheme, the agents that track the target collaborate by
broadcasting their measurements to other agents that also
track. Thus, each of the tracking agents have a complete set of
measurements for estimating the state parameters of the target
independently from one another. Note that here we adopt
a completely different approach of cooperation among the
agents compared to other recent efforts where the underlying
principle is achieving a consensus [8].

In this paper, we extend the work in [7] and include in
the measurement model an additive bias that accounts for
dynamic interferers present in the surveyed area. We propose
a method for target tracking in the presence of such biases
based on PF [9], which tracks the kinematics of the target by
using a discrete measure composed of particles and weights
associated to the particles. We model the biases as dynamic
parameters, which are treated as nuisance parameters since
they are linear in the measurement equation, and therefore
can be integrated out. In other words, we apply the concept of
Rao-Blackwellization (RB) [10], which allows for improved
estimation accuracy of the remaining unknowns in the model.
A detailed description of the implementation of RB in the
context of PF can be found in [11]. Some previous work on
estimation in presence of biased measurements was presented
in [12] where possible applications with solutions were
provided. Additive and multiplicative biases were studied in
[13] for detection of sensor faults in helicopters. In [14], the
bias problem was addressed in the context of sensor networks.
There it was suggested that the estimation of the states could
be decoupled from the estimation of the biases and sequential
estimation of the unknown states was accomplished by bias
compensation. We have also investigated the problem of
bias in target tracking, more specifically, in the context of
bearings-only tracking with measurements that have additive
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bias [15]. The proposed method was based on PF and RB,
and it employed only one Kalman filter (KF) instead of as
many KFs as there are particles. An extension of this work
was presented in [16, 17]. In all our previous contributions,
the common feature is that the biases were considered as
constant parameters. By contrast, in this paper, we address
the problem of biased measurements where the biases are
time varying with unknown dynamics. We prescribe a
specific model for the biases which attempts to capture the
variability of the biases with time. The model allows for a
simple and relatively resource-efficient approach to handling
multiple sources of additive dynamic interference without the
necessity of individualized interference source localization.

The remainder of the paper is organized as follows. The next
section introduces the problem of target tracking based on
received signal strength (RSS) measurements, which may be
corrupted by the presence of static or dynamic interferers.
We propose a general model that accounts for all of the
interferences and choose a simplified form for the RSS
measurements to emphasize the intent of the paper. In
Section 3, we describe an efficient algorithm which combines
the use of PF and KF. Simulation results demonstrating
performance of the model and method are presented in
Section 4. Conclusions are provided in Section 5.

2. PROBLEM FORMULATION

We consider an area-of-interest under surveillance by N
mobile agents. Upon detection of a target, mobile agents
dispatch and track as long as the target remains within
this zone. Track initialization is performed in a non-
centralized fashion according to a predefined protocol based
on measurements acquired immediately upon detection, and
is not discussed here. We assume that a target moves in a 2-D
plane according to the Markovian model

xt = Axt−1 + But, (1)

where xt is a state vector defined by

xt = [x1,t x2,t ẋ1,t ẋ2,t]
>

with x1,t and x2,t being the coordinates of the target in
the 2-D Cartesian coordinate system, and ẋ1,t and ẋ2,t, the
components of the target’s velocity and > denotes the matrix
transpose operator. The symbol A is a known 4 × 4 matrix,
defined by

A =

[
I2 TsI2

02 I2

]
,

where Ts is the sampling period, and I2 and 02 are the
identity and zero 2 × 2 matrices, respectively. The symbol
B is a 4× 2 known matrix given by

B =

[
T 2
s

2 I2

TsI2

]
.

The state noise is represented by the 2 × 1 vector ut whose
distribution is assumed to be Gaussian with zero mean and
covariance matrix Cu.

The agents that track the target are indexed by n =
1, 2, · · · , N . They receive signals from the target that may be
contaminated by the presence of dynamic interferences. The
n-th agent collects an observation at time instant t, which is
modeled by

yn,t = hn,t(xt) + bn,t + vn,t, (2)

where, in general hn,t(·) is a function that describes how the
state of the target maps into a measured signal by the nth
agent (in absence of observation noise), bn,t represents a time-
varying additive bias affecting the agent’s measurement and
which is due to effects of unaccounted dynamic interferers
at time instant t, and vn,t denotes the observation noise of
the nth agent. The distribution of the noise is known, and in
general, it does not have to be Gaussian.

For simplicity, here we assume that the function hn,t(·)
produces a scalar value and is given by

hn,t(xt) =
Ψdα0

‖rn,t − lt‖α
, (3)

where ‖·‖ denotes the Euclidean vector norm, lt =
[x1,t x2,t]

> is the location of the target at time instant t;
rn,t is the location of the nth agent at time instant t, Ψ is
the emitted signal power by the target measured at distance
d0, and α is a path-loss coefficient that depends on the
transmission medium and is assumed known.

We model the bias as

bn,t = bn,t−1 + |σt|gn,t (4)

where gn,t is a standard normal r.v. , gn,t ∼ N (0, 1) and

σt = σt−1 + et. (5)

Thus, the absolute value of σt is the standard deviation of
the bias. In expression (5), et denotes a perturbation that we
model as a zero mean Gaussian random variable of known
variance σ2

e . The choice of a dynamic σt was made to account
for nonstationarities in the bias arising from the unknown
number and dynamics of the present interferers.

3. PROPOSED SOLUTION

In the PF framework, one seeks to obtain the posterior
probability distribution of the state, xt, given the vector of
sensors’ measurements, y>t = [y1,t · · · yN,t], i.e., to obtain
p(xt|y1:t) in the presence of the unknown biases b>t =
[b1,t · · · bN,t]. This is done by generating random measures
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composed of particles and associated weights and updating
them recursively. In the problem of interest, we account for
efficient estimation by processing the nonlinear unknowns
using the particle filter and the conditionally linear ones (the
biases of the observations) by use of Kalman filtering with as
many KFs as particles [10].

Suppose that at time twe have the random measure of equally
weighted particles,

χt =
{
x
(m)
0:t , σ

(m)
0:t , w

(m)
t

}M
m=1

(6)

with w
(m)
t = 1

M and M being the number of particles.
We note that the weights are equal since at every step we
perform resampling [9]. Assume also that at time instant
t, the statistics of the biases are available and given by

N (b̂
(m)

t , Ĉ
(m)
bt

) with

b̂
(m)

t = [̂b
(m)
1,t , b̂

(m)
2,t , · · · , b̂

(m)
N,t ]>, (7)

Ĉ
(m)
bt

= diag
{
ς
(m)
1,t , ς

(m)
2,t , · · · , ς

(m)
N,t

}
. (8)

The proposed algorithm proceeds as follows:

1. Generation of particles. Particles of the nonlinear
unknowns are obtained from the prior densities as

x
(m)
t+1 ∼ N

(
Ax

(m)
t ,BCuB

>), (9)

σ
(m)
t+1 ∼ N

(
σ
(m)
t , σ2

e

)
. (10)

2. Computation of weights. The updating of the weights
is done according to

w̃
(m)
t+1 =

N∏
n=1

p (yn,t+1 |x(m)
t+1, σ

(m)
t+1), (11)

where the distributions p (yn,t+1 |x(m)
t+1, σ

(m)
t+1) are

Gaussians with respective means E(yn,t+1) =

hn,t+1(x
(m)
t+1) + b̂

(m)
n,t and variances q(m)

n,t+1, with b̂(m)
n,t

representing the estimated bias of the nth agent. Both
b̂
(m)
n,t and q(m)

n,t+1 are obtained by a KF as in step 4. The
resulting weights are then normalized,

w
(m)
t+1 = w̃

(m)
t+1/

M∑
k=1

w̃
(k)
t+1. (12)

3. Estimation of the nonlinear states. A possible
estimate of the parameters of interest is given by

x̂t+1 =
M∑
m=1

w
(m)
t+1x

(m)
t+1, (13)

σ̂t+1 =
M∑
m=1

w
(m)
t+1σ

(m)
t+1 . (14)

4. Measurement update of the linear states. If we start
with bn,0 ∼ N (µ0, ς0) (the priors are the same for all
streams and agents), then

b̂
(m)
n,t+1 = b̂

(m)
n,t +

s
(m)
n,t+1

q
(m)
n,t+1

(15)

×
(
yn,t+1 − hn,t+1(x

(m)
t+1)− b̂(m)

n,t

)
,

where

s
(m)
n,t+1 = ς

(m)
n,t + σ

(m)2

t+1 , (16)

q
(m)
n,t+1 = s

(m)
n,t+1 + σ2

v , (17)

ς
(m)
n,t+1 =

s
(m)
n,t+1σ

2
v

q
(m)
n,t+1

. (18)

5. Resampling. The resampling is performed using the
updated weights w(m)

t+1 [9].

Finally, note that the initialization of the algorithm is carried
out by considering a prior corresponding to the target’s initial
state, i.e., x(m)

0 ∼ π0(x0); by assuming equal weights, i.e.,
w

(m)
0 = 1

M ; and by setting the values of b̂0 and Ĉb0 as
mentioned in Step 4.

4. COMPUTER SIMULATIONS

For the performance evaluation of the new interference
compensation algorithm, we used a similar simulation
scenario as in [7] . Nine sensors were initially distributed
across a 3 x 3 grid. The target approached the sensor grid
from a random location and subject to random perturbations.
Once the target was within detection range of the grid, four
of the sensors were assigned to track the target. The sensors
maintained a distance of 3 m from the target. The number
of particles for the PF algorithm was set to M = 700,
whereas α = 2, and T = 1. The state and observation
noises were zero-mean Gaussian with variances σ2

u = 0.0005
and σ2

v = 0.005, respectively. Some time after the tracking
stabilized (t = 50 s), the interfering biases were initialized.
In our simulations, we evaluated the performance of the
algorithm with biases that were “artificial” and behaved
according to the described model, along with biases due to
contributions of real interfering targets. Figure 1 shows a
sample realization of the tracking error for modeled bias with
a variance perturbation of σe = 0.02. It can be seen that
the uncompensated “raw” filter (red) fails immediately after
the bias is turned on, while there is an almost unnoticeable
increase in the error over time for the compensated filter
(black). The actual interference bias for the first sensor along
with the corresponding estimates obtained by the proposed
method are shown in Figure 2.

Figure 3 shows the mean square error (MSE) of the target
position over 100 trials with several values of the model

3



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61 4



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61 5


