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ABSTRACT
This paper addresses the problem of real-time indoor tracking
of tagged objects in Ultra High Frequency Radio Frequency
IDentification (RFID) systems with layout information and
asynchronous readings. The method is based on binary
detections and the model for the probability of detection is
a function of both distance and angle between a tag and a
reader and accounts for the possibility of a tag being in a dead-
zone. A newly developed RFID component, called sense-a-
tag, is used to improve the tracking performance, especially in
areas with intersections and at portals, where the estimation of
the direction of movement is important. A multi-hypothesis
particle filtering method is applied for the tracking and its
performance is demonstrated by computer simulations.

Index Terms— Radio Frequency IDentification (RFID), in-
door tracking, particle filtering, asynchronous measurements

1. INTRODUCTION

Ultra High Frequency (UHF) Radio Frequency IDentification
(RFID) is a rapidly growing technology for real-time
identification and tracking that can be applied in many
settings including inventory management, health care systems
and the Internet of Things [1]. In this paper, we investigate the
problem of real-time tracking of tagged objects in warehouse-
like environments with layout information (intersections,
shelves and walls). The objective is to track tagged objects
moving between shelves and to estimate the direction of
movement, which is especially important at intersections and
portals for improved accuracy in inventory.

In our previous work [2, 3], we studied the problem of indoor
UHF RFID tag tracking based on aggregated binary readings.
The reader reports binary information indicating the detection
of a tag and uses aggregated number of detections over a fixed
number of queries. In this paper, binary detections are used
for real-time tracking, where tracking is updated as soon as a
detection occurs and the model is from [3]. According to that

This work was supported by NSF under Awards CCF-0953316 and CCF-
1018323.

model, the probability of detection is a function of both the
distance and angle from the tag to the reader, and accounts
for the possibility of a tag being in a dead-zone.

Tag responses are received by the readers asynchronously. We
propose the use of the particle filtering (PF) methodology
[4] that takes into account the asynchronous nature of the
readings. A study dealing with asynchronous readings
in traditional sensor networks can be found in [5]. In
the proposed approach, we also integrate available layout
information, which improves the performance of the PF.

In this paper we study the use of a newly developed low-
cost device called sense-a-tag (ST) [6, 7]. An ST has
the same functionality as a regular tag but can also detect
communication between the reader and tags in its proximity.
The ST can communicate this information to the reader
by backscattering. With the information received from the
STs, the system can improve the accuracy of localization
and can unambiguously estimate the direction of movement
of a tagged object [8]. The tracking of the direction of
movement of a person or object close to some monitoring
area is important in a number of applications. For example,
it is critical to determine if tagged goods are moving into or
out of a warehouse. Methods for estimation of the direction
of movement in RFID systems can be found in [9], where two
antennas are used and the direction of movement is estimated
by measuring the times of detection of a tagged object from
the signals of the antennas. An RFID system with STs and
using PF for tracking purposes was introduced in [10]. The
tracking problem was investigated in a very small area with
one single reader. In this paper, we extend the work from [10].
The main contribution is in a novel algorithm that operates
with asynchronous readings and exploits the presence of STs
in the RFID system.

2. PROBLEM FORMULATION

Consider the problem of tracking tagged objects (e.g., a
warehouse worker or a forklift) that move in a warehouse.
A possible deployment of a traditional reader-only system
is shown in Fig. 1. Each reader Ri is connected with three
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antennas denoted by the right (red), the upper left (green),
and the lower left (blue) sectors. The arrows indicate the
orientation of the antennas. We assume that the layout
information is known and includes intersections Vi, invalid
regions, shelves and walls.

R7

V1 V3

V6

V9V8

V4

V7

V2

R8

R3

R5

R1 R2

R6

R4

Reader Shelf

V5

Fig. 1. The RFID system in the considered warehouse layout.

A tagged object moves along the path between two shelves, or
the path between a shelf and a wall. The object can go straight
or make turns at intersections. For example at a T-shaped
intersection the object might turn left or right. The tracking
algorithm will account for these directions of movement.

2.1. The motion model

The state of the system consists of a vector containing
information about a particular tag at time instant t and is
denoted by xt ∈ R4×1, where xt = [x1,t x2,t ẋ1,t ẋ2,t]

>

and t ∈ R+. The first two elements of the vector are
the location of the tag in the two-dimensional Cartesian
coordinate system, and the other two elements are the
components of the velocity. When we focus on tracking the
direction of movement of the tag, we reformulate the problem
in one dimension. The tagged object moves from t1 to t2
according to the model

xt2 = Ai(t1, t2)xt1 +Bi(t1, t2)ut2,i, (1)

where i = 1, 2 denotes the ith motion mode depending if
the tag moves horizontally or vertically, respectively, xt2 is
the state of the system at time instant t2, ut,i ∈ R2×1 is a
noise vector with a known distribution, and Ai ∈ R4×4 and
Bi ∈ R4×2 are known matrices, respectively, given by

A1 =


1 0 (t2 − t1) 0
0 1 0 0
0 0 1 0
0 0 0 0

 , B1 =


(t2−t1)2

2 0
0 0

(t2 − t1) 0
0 0

 ,

A2 =


1 0 0 0
0 1 0 (t2 − t1)
0 0 0 0
0 0 0 1

 , B2 =


0 0

0 (t2−t1)2
2

0 0
0 (t2 − t1)

 .

2.2. The asynchronous readings

In real RFID systems, all readers start their queries at different
time instants. Once a reader receives the response from a
tag, it reports the detection to the data processing center.
A new query is then started immediately. In the existing
literature, the asynchronism of the readers is ignored and the
general assumption is that all the observations are obtained
synchronously at prefixed sampling instants [2, 10, 11].

Figure 2 describes the asynchronous nature of the readings of
a tag of interest. Each reading represents the detection of the
tag from one reader.

Fig. 2. Asynchronous readings (detections) in a real RFID
system of a particular tag.

We denote the kth detection by yk = {ik, jk, τk}, where
ik ∈ {1, 2, · · · , L} is the index of the reader that detected
the tag, jk ∈ {1, 2, 3} is the index of the antenna used in the
detection, and τk ∈ R+ is the time of the detection. We note
that τ1 ≤ τ2 ≤ τ3 ≤ · · · . All the readings up to time instant
τk are collected in the observation set Yk = {y1, y2, · · · , yk}.
The objective is to track xt in time given the observations and
the assumed model.

2.3. The observation model

The observation model constitutes a challenge when tracking
with RFID systems especially in indoor environments, since
the query and response processes depend on numerous factors
including the distance from the antenna, the orientation of the
antenna, and the multipath interference [11].

The probability of detecting a tag by a reader, p(d, θ), is
modeled as a random variable following a Beta distribution
[2, 3], which is described by a function of both the distance
d and the angle θ between the tag and the reader antenna,
Beta(α(d, θ), β(d, θ)), with parameters α(d, θ) > 0 and
β(d, θ) > 0. The model also accounts for the possibility of
a tag being in a dead-zone where the tag will not be detected
even within the detecting range. We denote that probability
as λ with λ ∼ Beta(αλ, βλ). The observation model is given
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by [3]

P (n = 1|d, θ) =
βλ

αλ + βλ

α(d, θ)

α(d, θ) + β(d, θ)
(2)

P (n = 0|d, θ) =
βλ

αλ + βλ

β(d, θ)

α(d, θ) + β(d, θ)
+

αλ
αλ + βλ

.

where n = 1 and n = 0 indicates whether a reader detected
the tag or not, respectively.

The mean of the probability of tag detection is given by
E(p(d, θ)) = α(d, θ)/(α(d, θ) + β(d, θ)) [12]. Furthermore,
we assume that this mean is of the form [3]

E(p(d, θ)) =
1

1 + e(a1+a2d+a3|θ|)
, (3)

where a1, a2 and a3 are model parameters that are estimated
from experimental data. Therefore, we express the probability
of detection as a function of distance and angle as

P (n = 1|d, θ) =
βλ

αλ + βλ

1

1 + e(a1+a2d+a3|θ|)
. (4)

3. PROPOSED METHOD

3.1. The particle filtering

The nonlinear nature of the observation model motivates the
use of the PF methodology for approximation of the posterior
distribution of the system state given the observations [13].
PF approximates the posterior density by using random
measures composed of particles and weights associated to the
particles [13]. In the considered real-time tracking problem,
PF propagates and updates the particles and weights every
time we receive a reading.

Suppose that at time instant τk−1, a random measure of
size M , χτk−1

= {x(m)
τk−1 , w

(m)
τk−1}Mm=1, is available, where

x
(m)
τk−1 are the particles of the measure, and w

(m)
τk−1 denote

the corresponding weights. Upon reception of the next
observation at τk, the particles are propagated according to

x(m)
τk
∼ π(xτk |x(m)

τk−1
, Yk), (5)

where π(xτk |x
(m)
τk−1 , Yk) is the proposal distribution used for

generation of new particles, x(m)
τk , and Yk is the set of all

readings up to τk. The general expression for computing the
weights of the particles is given by

w(m)
τk

∝ w(m)
τk−1

p(yk|x(m)
τk )p(x

(m)
τk |x

(m)
τk−1)

π(x
(m)
τk |x

(m)
τk−1 , Yk)

, (6)

where p(yk|x(m)
τk ) is the likelihood of x

(m)
τk , and

p(xτk |x
(m)
τk−1) is the transition distribution of the state com-

puted at x(m)
τk .

The transition distribution of the state is readily obtained
from (1), the layout information, the distribution of the
noise vector, and the assumption that uτk−1

and uτk are
independent. For π(xτk |x

(m)
τk−1 , Yk) we use p(xτk |x

(m)
τk−1),

and (6) simplifies to

w(m)
τk

∝ w(m)
τk−1

p(yk|x(m)
τk

), (7)

and it can be computed as

w(m)
τk

∝ w(m)
τk−1

f(x(m)
τk

, yk), (8)

where

f(x(m)
τk

, yk) =
βλ

αλ + βλ

1

1 + e(a1+a2d
(m)
τk

+a3|θ(m)
τk
|)
, (9)

where d
(m)
τk and θ

(m)
τk can be obtained from x

(m)
τk and the

location of the antenna jk of the reader ik that detected the
tag, whereas αλ and βλ are estimated from experimental data.

We apply a multi-hypothesis propagation by integrating the
layout information into the PF framework. Figure 3 (a) shows
an example of the propagation when the system relies only
on RFID readers. The particle cloud is split into three clouds
with different moving directions [14]. We keep all the clouds
with different hypotheses of the motion model, and update the
weight for each cloud after obtaining the new observation.
The resulting particle clouds have their own propagation
models but the weight normalization and the resampling steps
are performed over all the particles. Once more observations
are obtained, the number of particles in the cloud with the true
hypothesis is expected to increase, and vice versa.

V5

Particles at

Cloud3 atCloud2 at

Cloud1 at 2t

2t2t

1t

(a) Reader-only system.

V5

9 10

87

5 6

3 4
Particles at 1t

Cloud3 atCloud2 at

Cloud1 at 2t

2t 2t

(b) New system with STs.

Fig. 3. The multi-hypothesis particle propagation.

3.2. The sense-a-tag

In this section, we discuss a new semi-passive RFID system
with ST devices [6, 8] that will improve the accuracy
of tracking and will readily resolve the estimation of the
direction of movement at intersections.

As pointed out, the ST is a tag-like RFID component
with dual functionality. It can not only communicate
with the reader like standard tags, but can also sense the
communication between the reader and standard tags in its
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proximity. Based on the information backscattered by the STs
to the reader, localization and tracking algorithms based on
binary sensor principles can be developed [7, 8, 10].

R7 R8

R3

R5

R2

R6

R4

9 10

87

5 6

3 4

1 2

ST

R1

V1 V2 V3

V4

V7

V5

V8

V6

V9

Fig. 4. The RFID system with STs.

Figure 4 shows the deployment of a novel RFID system with
STs being placed in the corner of the shelves. In the new
RFID system with STs, we can also obtain the readings from
the STs at time instant τk (note that here we ignore the latency
due to the reporting from the ST to a reader) and now we
denote the kth detection by yk = {ik, jk, τk,nk}, where the
new argument nk is a vector of size L̃ × 1, with L̃ being the
number of STs in the system. The elements of the vector nk
take values one or zero, depending on if the corresponding
ST detected communication between the reader and the tag.
We apply the model of the probability of detection of the STs
from [10], which is a function of distance only and is given
by p̃(d̃) = 1/(1+eα̃(d̃−d̃0)) , where d̃ is the distance between
the ST and the tag, whereas α̃ and d̃0 are model parameters
that are estimated from experimental data. The likelihood
function in (8) is then multiplied by the factor

L̃∏
i=1

{
p̃(d̃

(m)
i )nk,i + (1− p̃(d̃(m)

i )(1− nk,i)
}
, (10)

where nk,i ∈ {0, 1} is the ith element of nk, d̃(m)
i is obtained

from the particle state x(m)
τk and the known locations of the

STs.

An example of the propagation of the particles is shown in
Fig. 3 (b). The particle cloud quickly merges into one with
the proximity information provided by the STs.

4. NUMERICAL RESULTS

The parameters of the model in (3) were obtained by using
an Impinj Speedway Reader connected to a single 6 dBIC
gain patch antenna and by using Alien Squiggle RFID tags.
Both the reader and the tags are compliant with the ISO
180006-C (EPC Gen 2) protocol. The tag was placed in an
orientation facing the reader at various distances from the
reader’s antenna whose power level was set to 23.5 dBm. The
reader was programmed to send out queries for a period of
30 s. We measured the probability of detection as a ratio of
the number of times the tag was read over the total number of
queries sent during the 30 s period.
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Fig. 5. Fitting of the mean of p(d, θ).

We modeled the probability of detection according to
expression (3) as shown in Fig. 5 and estimated the
parameters of the model as â1 = −4.9433, â2 = 0.8370
and â3 = 0.0552. We applied the model from [10] for the
probability of detection of an ST.

We simulated two setups. In the first setup, we deployed 8
readers in a warehouse of size 26 m × 10 m with shelves
whose separation was 6 m horizontally and 4 m vertically
as shown in Fig. 1. The widths of a path and a shelf were
set to 2 m. The noise of the state had a covariance matrix
diag(0.01, 0.01) and the initial speed was 1 m/s in the moving
direction. The objective was to detect and track the tagged
object for a period of 15 s. In the second setup, we included
four STs on the shelves’ corners with a separation distance of
2 m as shown in Fig. 4.

Figure 6 shows a tracking run with the two RFID systems.
The tracking near the intersections considers the multiple
choices. The long detecting range, the short physical
distance in the indoor setup and the asynchronism of the
detections makes the estimation of direction of movement
near intersections challenging. In Fig. 6 (a), the target is lost
due to the wrong estimation of the direction of movement.
However in the system with STs, the direction of movement
is estimated correctly with the proximity information given
by the STs as shown in Fig. 6 (b).
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(a) The reader-only system.

5 6 7 8 9 10 11 12 13
−2

−1

0

1

2

3

4

5

6

R2 R3

R6 R7

ST3 ST4

ST5 ST6

ST7 ST8

ST9 ST10

x position (m)

y 
po

si
tio

n 
(m

)

(b) The system with STs.

Fig. 6. A tracking run in the two systems. The red triangles
are the real states and the blue crosses are the tracking results.

Next, we generated 100 independent realizations to measure
the tracking performance using the average root mean square
error (RMSE) of the position of the target as a function of time
over 100 independent realizations. The RMSE for one real-
ization was calculated as

√
(x̂1,t − x1,t)2 + (x̂2,t − x2,t)2.

4
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We compared the performance of the reader-only and the ST-
based systems. The cumulative density functions (CDFs)
of the RMSEs of the position with the two systems are
displayed in Fig. 7. The results show that the system with
STs has improved tracking performance. The STs reduce the
ambiguity of the direction of movement near intersections
due to their capability of detecting the tags in their close
proximity. We also studied the impact of the particle size M .
We can see from Fig. 7 that larger M values result in better
tracking performance with the reader-only system. For the
system with STs, there is no big discrepancy in the tracking
performance for different M values. Thus, one can use small
particle sizes to reduce the computation complexity and still
achieve satisfactory performance. The advantage brought by
the STs is obvious. One can use STs to improve the indoor
localization or tracking performance, especially near portals
and intersections.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RMSE of position (m)

C
D

F 
of

 R
M

S
E

 

 

Reader−only (M =   60)
Reader−only (M = 120)
Reader−only (M = 180)
System with ST (M =   60)
System with ST (M = 120)
System with ST (M = 180)

Fig. 7. CDFs of RMSEs for systems with STs and without
STs (reader-only).

5. CONCLUSIONS

In this paper we addressed the problem of tracking tagged
objects in indoor RFID environments using asynchronous
binary readings and layout information. The tracking was
implemented in an RFID system that contained sense-a-
tags with known locations and that provided proximity
information to the system about the queried tags. We
proposed a multi-hypothesis particle filtering method for
tracking so that we account for estimating the direction
of movement and/or manoeuvering of the object. We
demonstrated the improved accuracy of the proposed method
by computer simulations.

6. REFERENCES

[1] K. Finkenzeller, RFID handbook, Wiley, New York,
2010.

[2] L. Geng, M. F. Bugallo, A. Athalye, and P. M. Djurić,
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