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ABSTRACT

Much work in the study of hyperspectral imagery has focused
on macroscopic mixtures and unmixing via the linear mixing
model. A substantially different approach seeks to model hy-
perspectral data non-linearly in order to accurately describe
intimate or microscopic relationships of materials within the
image. In this paper we present and discuss a new model
(MacMicDEM) that seeks to unify both approaches by repre-
senting a pixel as both linearly and non-linearly mixed, with
the condition that the endmembers for both mixture types
need not be related. Using this model, we develop a method to
accurately and quickly unmix data which is both macroscop-
ically and microscopically mixed. Subsequently, this method
is then validated on synthetic and real datasets.

Index Terms— Microscopic, Hyperspectral, Unmixing,
BRDF

1. INTRODUCTION

Researchers have focused intensely on the spectral unmixing
problem over the past 10-15 years. A majority of this focus
has been on unmixing the Linear Mixing Model (LMM) [1].
Consequently, many linear unmixing algorithms achieve very
good performance and are well-understood. In spite of receiv-
ing less attention, nonlinear unmixing algorithms have been
investigated steadily throughout this period. The success in
unmixing the LMM and documentation of the non-negligible
effects of nonlinearities [2, 3] are sufficient to warrant an in-
creased focus on nonlinear unmixing algorithms.

Recent approaches to non-linear mixing have included
kernel-based methods [4, 5], bilinear models, manifold-based
methods, and methods based upon physical models [1]. In
this paper we focus on a physical-model based approach us-
ing the widely known bidirectional reflectance distribution
function (BRDF) introduced by Hapke [6]. This function de-
scribes the relationship of observed reflectance to the albedo
of substances within the scene, based upon the properties of
the incident and emergent photons. Several approaches exist
that utilize the Hapke BRDF, however only work by Close
et al. [7] has come up with a model to take into account

simultaneously both linear (Macroscopic) and non-linear
(Microscopic) mixing within the same pixel using the BRDF.

In this paper a new non-linear unmixing model MacMic-
DEM (Macroscopic and Microscopic Difference from linear
EndMembers), that expands upon the work in [7], is pre-
sented. Following this, estimation techniques for all relevant
parameters are derived and experimental results are shown for
synthetic and real datasets.

2. MACROSCOPIC AND MICROSCOPIC
UNMIXING MODELS

When light is incident on a material, some of the light is
scattered and some is absorbed. A commonly used quantity
to measure the absorption properties of any such material is
known as the single scattering albedo. This can be defined as
the ratio of the reduction in radiance due to scattering to the
reduction in radiance due to both scattering and absorption.
An approximation to Hapke’s BRDF model [6] describes the
following relationship between albedo and radiance, which
we assume has been mapped to reflectance.

Rλ(wλ) =
wλ

4(ci + ce)
[H(ci)H(ce)] (1)

Here λ represents wavelength, R represents reflectance as
a function of wavelength, ci, ce represent the cosines of the
angles of incidence and emergence, and H is an approxima-
tion of Chandrasekhar’s function for isotropic scattering given
by

H(c) =
1 + 2c

(1 + 2c(1− wλ)
1
2 )

(2)

where wλ is the average single scattering albedo (SSA).
For a microscopically mixed substance of interest the SSA is
defined in terms of constituent material albedos (wmλ) and
corresponding fractional proportions (fm) as follows [6]:

wλ =

M∑
m=1

fmwmλ and
M∑

m=1

fm = 1 , fm ≥ 0 (3)

Microscopic mixing can thus be seen to be a linear mix-
ture in the albedo domain (Eqn. 3), which translates to a
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nonlinear mixture (via Eqn. 1) in the domain of reflectance.
There are many ways to combine Hapke’s microscopic mix-
ing model with the linear mixing model to devise nonlinear
models for spectral unmixing [7]. We adopt the approach of
modeling a pixel in such a way that it can be both partially
linearly mixed and partially nonlinearly mixed

xn =
M∑

m=1

αn,mem + αn,M+1R(
M∑

m=1

wmfn,m) (4)

Which we will also refer to in matrix form as

xn = Eαn,1:M + αn,M+1R(Wfn) (5)

Here xn is the K-dimensional spectral vector of the n′th
pixel (n ∈ {1, ..., N}). Similarly, em denotes the spectra
of the m-th linear endmember in the reflectance domain and
wm denotes the spectra of the m-th non-linear endmember in
the albedo domain. Corresponding proportions are given by
αn,m, fn,m respectively, and are assumed to satisfy positivity
and sum to one constraints (Eqns. 7 - 8 ). Note also that
we extend the definition of Rλ in Eqn. 1 to that of a vector
function : R(w) = [Rλ(w1), ..., Rλ(wK)].

The model shown above is similar to the model given by
[7]. However, in our method a key assumption made by [7]
is not made: The endmembers involved in linear mixing are
not assumed to be the related to the endmembers involved in
nonlinear mixing. In other words we don’t assume

R(wm) = em. (6)

Our observations on real data and the methods used in [7]
have indicated that endmembers in hyperspectral data are
present as constituents of macroscopic or microscopic mix-
tures, but often times not both. Indeed, assuming endmem-
bers that are, for example, present in a linear mixture will
also be present in a non linear mixture elsewhere in the scene
is not a realistic assumption, so we do not enforce this con-
straint. Subsequently, the complexity of our model is reduced
(compared to [7]) : the size of the required endmember set to
unmix a given dataset, and thus the number of proportions to
estimate, is less. Furthermore, future work into endmember
extraction using this model is more feasible as this constraint
is mathematically prohibitive.

3. INVERTING THE MACMICDEM MODEL

Now that we have defined our mixing model (Eqn 4), we de-
scribe the unmixing process, that is we describe estimation
Non-linear proportions (f ), and linear proportions α. Addi-
tionally we perform this estimation under the following con-
straints, corresponding to physical constraints of linear mix-
ing in the reflectance and albedo domains :

∀i,
M∑

m=1

fi,m = 1 and fi,m ≥ 0 (7)

∀i,
M+1∑
m=1

αi,m = 1 and αi,m ≥ 0 (8)

We approach this inversion problem by defining an objec-
tive function for purposes of minimization. This objective is
based upon the objective introduced by Berman et al. in [8],
and consists of a Residual Sum of Squares (RSS) form:

RSS :=
1

N

N∑
n=1

||xn −Eαn,1:M − αn,M+1R(Wfn)||2 (9)

Fixing the non-linear proportions, estimation of αn is
straightforward and can be accomplished by fixing a tempo-
rary M + 1’th endmember : eM+1 := R(Wfn). Then we
write the RSS as

RSS :=
1

N

N∑
n=1

||xn −E′αn||2 (10)

Where E′ := [E, eM+1]. The resulting objective is then
identical (up to a constant) to that of ICE [8], In other words
we have reduced the problem to that of the linear case and
unmix accordingly. The standard approach in this case is
through quadratic programming (QP), since RSS can be ob-
served to be quadratic in α. as in ICE [8].

If, on the other hand, we assume the linear proportions
fixed, we can estimate f . However, the function R is nonlinear
so the objective is not quadratic in f , so instead we resort to a
different objective function by redefining the RSS term as the
RSS in the albedo domain :

RSSalb :=
1

N

N∑
n=1

||R−1(
xn −

∑M
k=1 αnkek

αn,M+1
)−

M∑
k=1

fikwk||2

(11)
Note here that R is monotonic as a function of albedo [6],

and thus R−1 is well defined. With this objective, the full ob-
jective function is quadratic in f , so we again use quadratic
programming to estimate the non-linear abundances. It is
also worthwhile to know that in the purely non-linear case
αn,M+1 = 1, and thus αn,m = 0 for m ≤ M , so this objec-
tive simplifies into

RSSalb :=
1

N

N∑
n=1

||R−1(xn)−
M∑
k=1

fikwk||2 (12)

Subsequently, by alternating the two above estimation
steps in sequence, we come up with the MacMicDEM un-
mixing algorithm, shown below.
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Algorithm 1 Unmixing MacMicDEM

1. Initialization

• Fix αn,M+1 = 1 for all n

• Unmix f using QP and Eqn. (12)

• Fix f . Unmix α using QP and Eqn. (10)

2. DO UNTIL Convergence or MAX ITER

(a) Solve for α using QP and (10).

(b) Find a set of pixels Y := {xn} for which αn+1 >
0.01

(c) For each pixel in Y . Solve for f using QP and
(11)

(d) Check for Convergence of the Global Objective
Eqn. (9)

3. END

Where MAX ITER, is a fixed constant denoting an upper
bound for iteration. Experimental results can be found in the
following sections.

4. EXPERIMENTAL RESULTS : SYNTHETIC DATA

In this section we describe an experiment on a synthetic
dataset generated with endmembers taken from Ground-
measured spectra collected over Gulfport, Mississippi in
2010 by Gader et al. of the University of Florida [9].

For the endmembers in our experiment we selected three
spectra (Grass, Sidewalk, and a Yellow Curb) for the linear
mixture, and three spectra (Sand, Dead Leaves, Dead Weeds)
for the non linear mixture. These endmember spectra can be
seen in Figure 2.

Concerning construction of the actual dataset, we dimen-
sionally reduced the data to 50 dimensions, and proceeded
by taking a dataset of 15000 points consisting of 5000 purely
linear, 5000 purely non-linear and 5000 mixed linear and non-
linear spectra. For testing purposes we created 1000 such
datasets, with varying mixture structure. One such dataset can
be seen in Figure 1. Furthermore for all non-linear mixing we
set an incidence and emergence angle of 45 degrees, these an-
gles are treated parameters and must be known in advance for
the utilization of Hapke’s BRDF (Eqn. 1) to be effective.

Proportions for each mixture component were drawn
from varied Dirichlet distributions for each of the thousand
datasets. Each parameter in the Dirichlet distribution was var-
ied uniformly from 0.1 to 10 over all 1000 generated datasets.
This was done with the exception of the mixed portion of each
dataset, whose Dirichlet parameter corresponding to αM+1,
the non-linear proportion mixture, was fixed to the sum of the
Dirichlet parameters for α1... αM to ensure mixture balance.

Additionally, Gaussian noise with variance 10−5 was

Fig. 1: This figure is a 3D PCA visualization of a single dataset
of 15000 points. Red shows the linear mixture, Blue the non-linear
mixture, and Green the combined linear-non-linear mixture.

(a)

(b)

Fig. 2: Endmembers for the (a). Linear (E) and (b). Nonlinear
(R(W)) portions of the model.

added to each band of each data point. Table 1 shows the
mean result of unmixing MacMicDEM on each portion of
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each dataset, and Table 2 shows the corresponding variance
of each estimator.

Table 1: Synthetic Data Results

Error Measure Linear Non-Linear Mixed
RSS/N(10−3) 0.6215 0.5548 0.6132

RMSEF - 0.0193 0.1115
RMSEα 0.0493 0.0206 0.0742

RMSEαM+1
0.0778 0.0321 0.0964

Here the Residual Sum of Squares (RSS) is defined by
the quantity that appears in Eqn. (9), and RMSEF,RMSEα

are the root mean squared errors (RMSE) of the linear and
non-linear proportions respectively, averaged over each pixel.
Furthermore, RMSEαM+1

is the average RMSE of just the
nonlinear proportion αM+1,n over each pixel xn. Note that
value of f plays no role in the case of a purely linear model
(e.g. αM+1,n < 0.01) as in the first portion of each dataset,
so we omit this result.

Table 2: Synthetic Variance

Variance Of Linear Non-Linear Mixed
RSS/N(10−6) 0.0195 0.0054 0.0517
RMSEF (10

−3) - 0.0464 2.7248
RMSEα(10

−3) 0.0231 0.0504 0.6627
RMSEαM+1(10

−3) 0.0597 0.1268 1.3120

It can be seen from these results that the model performs
best on the purely non-linear portion of the dataset(s), with
low RMSE values for all parameters. Proportion estimates
for the mixed and linear portions are higher. Moreover, ob-
serve the significantly high variance in the mixed portion of
the dataset(s), this variance is several orders of magnitude
higher than those of the other portions, even though both the
RSS and RSS variance is relatively low. This indicates the
possibility that the model contains multiple near-correct solu-
tions, which is a known issue with other models of this type
[10]. To confirm this effect we repeated this experiment with
a single dataset with no noise. Results can be seen in Table 3.

Table 3: Synthetic Data : No Noise

Error Measure Linear Non-Linear Mixed
RSS/N(10−3) 0 0 0.1480

RMSEF - 0 0.0651
RMSEα 0 0 0.0708

RMSEαM+1
0 0 0.0826

Where a value of 0 denotes a value that is essentially
zero (< 10−13). MacMicDEM was able to automatically
detect pure linear and pure non-linear mixtures in the case

of no noise. This is clear evidence that the model is over-
parameterized in the mixed pixel case. Indeed, the high error
in the presence of both microscopic and macroscopic mix-
tures within the same pixel suggests strongly that unmixing
via MacMicDEM can be an ill-posed inversion problem with
multiple solutions that minimize the objective, although this
issue does not appear to affect pixels composed of purely
macroscopic or purely microscopic mixtures.

5. EXPERIMENTAL RESULTS : REAL DATA

In this section we describe an experiment on a real-world
dataset using data collected over Gulfport, Mississippi in
2010 by Gader et al. of the University of Florida [9]. First,
we selected a region of the collection that seemed likely to
have intimate mixtures, this region is shown in Figure 3, and
comprises a dataset of 3111 pixels with 51 bands each.

Fig. 3: This figure shows the region selected for the dataset, this
region shows a road, a median, and some sandy and grassy areas.

For the endmembers in our experiment we selected four
Ground-measured spectra (Live Grass, Dead Leaves, Con-
crete, and Sand), which were scaled appropriately to the di-
mension of the data. These spectra were selected based upon
visual analysis of likely constituents of the scene, and some
of them are shown in Figure 2.

When unmixing with MacMicDEM we used Grass, Dead
Leaves, Concrete as endmembers for the linear portion of the
mixture, and Dead Leaves, Sand, and Grass as endmembers
for the non-linear portion. We justify the use of similar end-
members in different parts of the model as a reflection of our
understanding of the scene: some endmembers are present
in both linear and nonlinear mixtures, but others should not
be. We expected to detect a strong non-linear response in the
grassy area to the top left (with Grass and Dead Leaves), as
well as the median of the road (with Sand, Grass, and Dead
Leaves).

For unmixing, we used an angle of incidence of 45, close
to the angle of the sun at the time, and an angle of emergence
of 10, reflecting the position of this scene to the data collec-
tion device. Figure 4 shows the resulting values of αn,M+1

4
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for each pixel after unmixing with MacMicDEM.

Fig. 4: This figure shows the strength of the non-linear proportion
αM+1 over this dataset. Proportion values of 1.0 are shown in red,
and 0.0 are shown in blue.

It can be seen that there is a strong non-linear response
in the median, as expected, as well as a response from the
grassy area in the top left corner. Figures 5 (a) and (b) show
the resulting linear and non-linear proportion maps.

(a)

(b)

Fig. 5: Estimated proportion maps with red denoting a proportion
of 1.0 and blue denoting a proportion of 0.0, for (a) the Linear and
(b) the Non Linear parts of the model. The non-linear proportion is
scaled by the corresponding value of αM+1 for each pixel.

Furthermore, observe that in the non-linear proportion

maps there is a non-trivial non-linear response present in the
grassy area in the top left from an intimate mixture of both
the Dead Leaves and Grass endmember. Likewise, there is a
strong non-linear response present in the median between the
Sand and Dead Leaves endmembers, indicating the likelihood
of intimate mixing between sand and dead vegetation within
the median.

6. CONCLUSION AND FUTURE WORK

In conclusion we have presented a novel algorithm, MacMic-
DEM, for non-linear spectral unmixing of datasets containing
both microscopic and macroscopic mixtures and have shown
it to be effective at unmixing synthetic data in the case of
purely linear and purely non-linear mixtures, but not as effec-
tive for data which is both linearly and non-linearly mixed.
Moreover, we found this method to be faster than previous
approaches of this form such as [7], and it can thus be used
on very large datasets. Possibilities for future work in this
area could include both linear and non-linear endmember es-
timation algorithms for this model, as well as the addition of
a regularization term for the abundance fractions.
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